Metamath Proof Explorer


Theorem sqmid3api

Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022)

Ref Expression
Hypotheses sqmid3api.a A
sqmid3api.n N
sqmid3api.b A+N=B
sqmid3api.c B+N=C
Assertion sqmid3api BB=AC+ N N

Proof

Step Hyp Ref Expression
1 sqmid3api.a A
2 sqmid3api.n N
3 sqmid3api.b A+N=B
4 sqmid3api.c B+N=C
5 1 2 1 2 muladdi A+NA+N=AA+ N N+A N+A N
6 3 3 oveq12i A+NA+N=BB
7 1 1 mulcli AA
8 2 2 mulcli N N
9 1 2 mulcli A N
10 9 9 addcli A N+A N
11 7 8 10 add32i AA+ N N+A N+A N=AA+A N+A N+ N N
12 1 2 addcli A+N
13 1 12 2 adddii AA+N+N=AA+N+A N
14 3 oveq1i A+N+N=B+N
15 14 4 eqtri A+N+N=C
16 15 oveq2i AA+N+N=AC
17 1 1 2 adddii AA+N=AA+A N
18 17 oveq1i AA+N+A N=AA+A N+A N
19 7 9 9 addassi AA+A N+A N=AA+A N+A N
20 18 19 eqtri AA+N+A N=AA+A N+A N
21 13 16 20 3eqtr3ri AA+A N+A N=AC
22 21 oveq1i AA+A N+A N+ N N=AC+ N N
23 11 22 eqtri AA+ N N+A N+A N=AC+ N N
24 5 6 23 3eqtr3i BB=AC+ N N