Metamath Proof Explorer


Theorem sqn5ii

Description: The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022)

Ref Expression
Hypotheses sqn5i.1
|- A e. NN0
sqn5ii.2
|- ( A + 1 ) = B
sqn5ii.3
|- ( A x. B ) = C
Assertion sqn5ii
|- ( ; A 5 x. ; A 5 ) = ; ; C 2 5

Proof

Step Hyp Ref Expression
1 sqn5i.1
 |-  A e. NN0
2 sqn5ii.2
 |-  ( A + 1 ) = B
3 sqn5ii.3
 |-  ( A x. B ) = C
4 1 sqn5i
 |-  ( ; A 5 x. ; A 5 ) = ; ; ( A x. ( A + 1 ) ) 2 5
5 2 oveq2i
 |-  ( A x. ( A + 1 ) ) = ( A x. B )
6 5 deceq1i
 |-  ; ( A x. ( A + 1 ) ) 2 = ; ( A x. B ) 2
7 6 deceq1i
 |-  ; ; ( A x. ( A + 1 ) ) 2 5 = ; ; ( A x. B ) 2 5
8 3 deceq1i
 |-  ; ( A x. B ) 2 = ; C 2
9 8 deceq1i
 |-  ; ; ( A x. B ) 2 5 = ; ; C 2 5
10 4 7 9 3eqtri
 |-  ( ; A 5 x. ; A 5 ) = ; ; C 2 5