Metamath Proof Explorer


Theorem sqnegd

Description: The square of the negative of a number. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypothesis sqnegd.1
|- ( ph -> A e. CC )
Assertion sqnegd
|- ( ph -> ( -u A ^ 2 ) = ( A ^ 2 ) )

Proof

Step Hyp Ref Expression
1 sqnegd.1
 |-  ( ph -> A e. CC )
2 sqneg
 |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) )
3 1 2 syl
 |-  ( ph -> ( -u A ^ 2 ) = ( A ^ 2 ) )