Metamath Proof Explorer


Theorem negexpidd

Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypotheses negexpidd.1
|- ( ph -> A e. RR )
negexpidd.2
|- ( ph -> N e. NN0 )
negexpidd.3
|- ( ph -> -. 2 || N )
Assertion negexpidd
|- ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = 0 )

Proof

Step Hyp Ref Expression
1 negexpidd.1
 |-  ( ph -> A e. RR )
2 negexpidd.2
 |-  ( ph -> N e. NN0 )
3 negexpidd.3
 |-  ( ph -> -. 2 || N )
4 1 2 reexpcld
 |-  ( ph -> ( A ^ N ) e. RR )
5 4 recnd
 |-  ( ph -> ( A ^ N ) e. CC )
6 5 negidd
 |-  ( ph -> ( ( A ^ N ) + -u ( A ^ N ) ) = 0 )
7 1 recnd
 |-  ( ph -> A e. CC )
8 7 mulm1d
 |-  ( ph -> ( -u 1 x. A ) = -u A )
9 8 eqcomd
 |-  ( ph -> -u A = ( -u 1 x. A ) )
10 9 oveq1d
 |-  ( ph -> ( -u A ^ N ) = ( ( -u 1 x. A ) ^ N ) )
11 nn0z
 |-  ( N e. NN0 -> N e. ZZ )
12 11 a1i
 |-  ( ph -> ( N e. NN0 -> N e. ZZ ) )
13 12 3 jctird
 |-  ( ph -> ( N e. NN0 -> ( N e. ZZ /\ -. 2 || N ) ) )
14 2 13 mpd
 |-  ( ph -> ( N e. ZZ /\ -. 2 || N ) )
15 m1expo
 |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 )
16 15 a1i
 |-  ( ph -> ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) )
17 14 16 mpd
 |-  ( ph -> ( -u 1 ^ N ) = -u 1 )
18 17 oveq1d
 |-  ( ph -> ( ( -u 1 ^ N ) x. ( A ^ N ) ) = ( -u 1 x. ( A ^ N ) ) )
19 5 mulm1d
 |-  ( ph -> ( -u 1 x. ( A ^ N ) ) = -u ( A ^ N ) )
20 18 19 eqtr2d
 |-  ( ph -> -u ( A ^ N ) = ( ( -u 1 ^ N ) x. ( A ^ N ) ) )
21 neg1cn
 |-  -u 1 e. CC
22 21 a1i
 |-  ( ph -> -u 1 e. CC )
23 22 7 2 mulexpd
 |-  ( ph -> ( ( -u 1 x. A ) ^ N ) = ( ( -u 1 ^ N ) x. ( A ^ N ) ) )
24 20 23 eqtr4d
 |-  ( ph -> -u ( A ^ N ) = ( ( -u 1 x. A ) ^ N ) )
25 10 24 eqtr4d
 |-  ( ph -> ( -u A ^ N ) = -u ( A ^ N ) )
26 25 oveq2d
 |-  ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = ( ( A ^ N ) + -u ( A ^ N ) ) )
27 26 eqeq1d
 |-  ( ph -> ( ( ( A ^ N ) + ( -u A ^ N ) ) = 0 <-> ( ( A ^ N ) + -u ( A ^ N ) ) = 0 ) )
28 6 27 mpbird
 |-  ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = 0 )