| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negexpidd.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
negexpidd.2 |
|- ( ph -> N e. NN0 ) |
| 3 |
|
negexpidd.3 |
|- ( ph -> -. 2 || N ) |
| 4 |
1 2
|
reexpcld |
|- ( ph -> ( A ^ N ) e. RR ) |
| 5 |
4
|
recnd |
|- ( ph -> ( A ^ N ) e. CC ) |
| 6 |
5
|
negidd |
|- ( ph -> ( ( A ^ N ) + -u ( A ^ N ) ) = 0 ) |
| 7 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 8 |
7
|
mulm1d |
|- ( ph -> ( -u 1 x. A ) = -u A ) |
| 9 |
8
|
eqcomd |
|- ( ph -> -u A = ( -u 1 x. A ) ) |
| 10 |
9
|
oveq1d |
|- ( ph -> ( -u A ^ N ) = ( ( -u 1 x. A ) ^ N ) ) |
| 11 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 12 |
11
|
a1i |
|- ( ph -> ( N e. NN0 -> N e. ZZ ) ) |
| 13 |
12 3
|
jctird |
|- ( ph -> ( N e. NN0 -> ( N e. ZZ /\ -. 2 || N ) ) ) |
| 14 |
2 13
|
mpd |
|- ( ph -> ( N e. ZZ /\ -. 2 || N ) ) |
| 15 |
|
m1expo |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) |
| 16 |
15
|
a1i |
|- ( ph -> ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) ) |
| 17 |
14 16
|
mpd |
|- ( ph -> ( -u 1 ^ N ) = -u 1 ) |
| 18 |
17
|
oveq1d |
|- ( ph -> ( ( -u 1 ^ N ) x. ( A ^ N ) ) = ( -u 1 x. ( A ^ N ) ) ) |
| 19 |
5
|
mulm1d |
|- ( ph -> ( -u 1 x. ( A ^ N ) ) = -u ( A ^ N ) ) |
| 20 |
18 19
|
eqtr2d |
|- ( ph -> -u ( A ^ N ) = ( ( -u 1 ^ N ) x. ( A ^ N ) ) ) |
| 21 |
|
neg1cn |
|- -u 1 e. CC |
| 22 |
21
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 23 |
22 7 2
|
mulexpd |
|- ( ph -> ( ( -u 1 x. A ) ^ N ) = ( ( -u 1 ^ N ) x. ( A ^ N ) ) ) |
| 24 |
20 23
|
eqtr4d |
|- ( ph -> -u ( A ^ N ) = ( ( -u 1 x. A ) ^ N ) ) |
| 25 |
10 24
|
eqtr4d |
|- ( ph -> ( -u A ^ N ) = -u ( A ^ N ) ) |
| 26 |
25
|
oveq2d |
|- ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = ( ( A ^ N ) + -u ( A ^ N ) ) ) |
| 27 |
26
|
eqeq1d |
|- ( ph -> ( ( ( A ^ N ) + ( -u A ^ N ) ) = 0 <-> ( ( A ^ N ) + -u ( A ^ N ) ) = 0 ) ) |
| 28 |
6 27
|
mpbird |
|- ( ph -> ( ( A ^ N ) + ( -u A ^ N ) ) = 0 ) |