Metamath Proof Explorer


Theorem rexlimdv3d

Description: An extended version of rexlimdvv to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypothesis rexlimdv3d.1
|- ( ph -> ( ( x e. A /\ y e. B /\ z e. C ) -> ( ps -> ch ) ) )
Assertion rexlimdv3d
|- ( ph -> ( E. x e. A E. y e. B E. z e. C ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdv3d.1
 |-  ( ph -> ( ( x e. A /\ y e. B /\ z e. C ) -> ( ps -> ch ) ) )
2 1 3expd
 |-  ( ph -> ( x e. A -> ( y e. B -> ( z e. C -> ( ps -> ch ) ) ) ) )
3 2 imp4d
 |-  ( ph -> ( ( x e. A /\ ( y e. B /\ z e. C ) ) -> ( ps -> ch ) ) )
4 3 expdimp
 |-  ( ( ph /\ x e. A ) -> ( ( y e. B /\ z e. C ) -> ( ps -> ch ) ) )
5 4 rexlimdvv
 |-  ( ( ph /\ x e. A ) -> ( E. y e. B E. z e. C ps -> ch ) )
6 5 rexlimdva
 |-  ( ph -> ( E. x e. A E. y e. B E. z e. C ps -> ch ) )