Description: An extended version of rexlimdvv to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexlimdv3d.1 | |- ( ph -> ( ( x e. A /\ y e. B /\ z e. C ) -> ( ps -> ch ) ) ) |
|
Assertion | rexlimdv3d | |- ( ph -> ( E. x e. A E. y e. B E. z e. C ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdv3d.1 | |- ( ph -> ( ( x e. A /\ y e. B /\ z e. C ) -> ( ps -> ch ) ) ) |
|
2 | 1 | 3expd | |- ( ph -> ( x e. A -> ( y e. B -> ( z e. C -> ( ps -> ch ) ) ) ) ) |
3 | 2 | imp4d | |- ( ph -> ( ( x e. A /\ ( y e. B /\ z e. C ) ) -> ( ps -> ch ) ) ) |
4 | 3 | expdimp | |- ( ( ph /\ x e. A ) -> ( ( y e. B /\ z e. C ) -> ( ps -> ch ) ) ) |
5 | 4 | rexlimdvv | |- ( ( ph /\ x e. A ) -> ( E. y e. B E. z e. C ps -> ch ) ) |
6 | 5 | rexlimdva | |- ( ph -> ( E. x e. A E. y e. B E. z e. C ps -> ch ) ) |