Description: An extended version of rexlimdvv to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexlimdv3d.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝜓 → 𝜒 ) ) ) | |
Assertion | rexlimdv3d | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 → 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdv3d.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝜓 → 𝜒 ) ) ) | |
2 | 1 | 3expd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝐶 → ( 𝜓 → 𝜒 ) ) ) ) ) |
3 | 2 | imp4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝜓 → 𝜒 ) ) ) |
4 | 3 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝜓 → 𝜒 ) ) ) |
5 | 4 | rexlimdvv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 → 𝜒 ) ) |
6 | 5 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 → 𝜒 ) ) |