Metamath Proof Explorer


Theorem rexlimdv3d

Description: An extended version of rexlimdvv to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypothesis rexlimdv3d.1 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → ( 𝜓𝜒 ) ) )
Assertion rexlimdv3d ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdv3d.1 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) → ( 𝜓𝜒 ) ) )
2 1 3expd ( 𝜑 → ( 𝑥𝐴 → ( 𝑦𝐵 → ( 𝑧𝐶 → ( 𝜓𝜒 ) ) ) ) )
3 2 imp4d ( 𝜑 → ( ( 𝑥𝐴 ∧ ( 𝑦𝐵𝑧𝐶 ) ) → ( 𝜓𝜒 ) ) )
4 3 expdimp ( ( 𝜑𝑥𝐴 ) → ( ( 𝑦𝐵𝑧𝐶 ) → ( 𝜓𝜒 ) ) )
5 4 rexlimdvv ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑦𝐵𝑧𝐶 𝜓𝜒 ) )
6 5 rexlimdva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓𝜒 ) )