Metamath Proof Explorer


Theorem 3cubeslem1

Description: Lemma for 3cubes . (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a ( 𝜑𝐴 ∈ ℚ )
Assertion 3cubeslem1 ( 𝜑 → 0 < ( ( ( 𝐴 + 1 ) ↑ 2 ) − 𝐴 ) )

Proof

Step Hyp Ref Expression
1 3cubeslem1.a ( 𝜑𝐴 ∈ ℚ )
2 qre ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ )
3 1 2 syl ( 𝜑𝐴 ∈ ℝ )
4 0red ( 𝜑 → 0 ∈ ℝ )
5 3 4 lttri4d ( 𝜑 → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) )
6 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ )
7 0red ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 ∈ ℝ )
8 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
9 8 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( 𝐴 + 1 ) ∈ ℝ )
10 9 resqcld ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( ( 𝐴 + 1 ) ↑ 2 ) ∈ ℝ )
11 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 < 0 )
12 9 sqge0d ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 ≤ ( ( 𝐴 + 1 ) ↑ 2 ) )
13 6 7 10 11 12 ltletrd ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) )
14 13 a1i ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) )
15 3 14 mpand ( 𝜑 → ( 𝐴 < 0 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) )
16 0lt1 0 < 1
17 16 a1i ( 𝐴 = 0 → 0 < 1 )
18 id ( 𝐴 = 0 → 𝐴 = 0 )
19 sq1 ( 1 ↑ 2 ) = 1
20 19 a1i ( 𝐴 = 0 → ( 1 ↑ 2 ) = 1 )
21 17 18 20 3brtr4d ( 𝐴 = 0 → 𝐴 < ( 1 ↑ 2 ) )
22 0cnd ( 𝐴 = 0 → 0 ∈ ℂ )
23 1cnd ( 𝐴 = 0 → 1 ∈ ℂ )
24 18 oveq1d ( 𝐴 = 0 → ( 𝐴 + 1 ) = ( 0 + 1 ) )
25 22 23 24 comraddd ( 𝐴 = 0 → ( 𝐴 + 1 ) = ( 1 + 0 ) )
26 1p0e1 ( 1 + 0 ) = 1
27 25 26 eqtrdi ( 𝐴 = 0 → ( 𝐴 + 1 ) = 1 )
28 27 oveq1d ( 𝐴 = 0 → ( ( 𝐴 + 1 ) ↑ 2 ) = ( 1 ↑ 2 ) )
29 21 28 breqtrrd ( 𝐴 = 0 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) )
30 29 a1i ( 𝜑 → ( 𝐴 = 0 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) )
31 ax-1rid ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 )
32 31 adantr ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 )
33 simpl ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ )
34 1red ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 1 ∈ ℝ )
35 33 34 readdcld ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ )
36 simpr ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < 𝐴 )
37 0red ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ∈ ℝ )
38 ltle ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
39 37 33 38 syl2anc ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
40 33 ltp1d ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( 𝐴 + 1 ) )
41 39 40 jctird ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < 𝐴 → ( 0 ≤ 𝐴𝐴 < ( 𝐴 + 1 ) ) ) )
42 36 41 mpd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 ≤ 𝐴𝐴 < ( 𝐴 + 1 ) ) )
43 34 35 jca ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) )
44 0le1 0 ≤ 1
45 44 a1i ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 1 )
46 1e0p1 1 = ( 0 + 1 )
47 37 33 34 36 ltadd1dd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 + 1 ) < ( 𝐴 + 1 ) )
48 46 47 eqbrtrid ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 1 < ( 𝐴 + 1 ) )
49 43 45 48 jca32 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( 0 ≤ 1 ∧ 1 < ( 𝐴 + 1 ) ) ) )
50 ltmul12a ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( 0 ≤ 𝐴𝐴 < ( 𝐴 + 1 ) ) ) ∧ ( ( 1 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( 0 ≤ 1 ∧ 1 < ( 𝐴 + 1 ) ) ) ) → ( 𝐴 · 1 ) < ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) )
51 33 35 42 49 50 syl1111anc ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 1 ) < ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) )
52 32 51 eqbrtrrd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) )
53 35 recnd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 + 1 ) ∈ ℂ )
54 53 sqvald ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) )
55 52 54 breqtrrd ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) )
56 55 a1i ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) )
57 3 56 mpand ( 𝜑 → ( 0 < 𝐴𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) )
58 15 30 57 3jaod ( 𝜑 → ( ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) )
59 5 58 mpd ( 𝜑𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) )
60 3 8 syl ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ )
61 60 resqcld ( 𝜑 → ( ( 𝐴 + 1 ) ↑ 2 ) ∈ ℝ )
62 3 61 posdifd ( 𝜑 → ( 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ↔ 0 < ( ( ( 𝐴 + 1 ) ↑ 2 ) − 𝐴 ) ) )
63 59 62 mpbid ( 𝜑 → 0 < ( ( ( 𝐴 + 1 ) ↑ 2 ) − 𝐴 ) )