| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cubeslem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
| 2 |
|
qre |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |
| 3 |
1 2
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 5 |
3 4
|
lttri4d |
⊢ ( 𝜑 → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
| 7 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) |
| 8 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 10 |
9
|
resqcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( ( 𝐴 + 1 ) ↑ 2 ) ∈ ℝ ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
| 12 |
9
|
sqge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 ≤ ( ( 𝐴 + 1 ) ↑ 2 ) ) |
| 13 |
6 7 10 11 12
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) ) |
| 15 |
3 14
|
mpand |
⊢ ( 𝜑 → ( 𝐴 < 0 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) ) |
| 16 |
|
0lt1 |
⊢ 0 < 1 |
| 17 |
16
|
a1i |
⊢ ( 𝐴 = 0 → 0 < 1 ) |
| 18 |
|
id |
⊢ ( 𝐴 = 0 → 𝐴 = 0 ) |
| 19 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 20 |
19
|
a1i |
⊢ ( 𝐴 = 0 → ( 1 ↑ 2 ) = 1 ) |
| 21 |
17 18 20
|
3brtr4d |
⊢ ( 𝐴 = 0 → 𝐴 < ( 1 ↑ 2 ) ) |
| 22 |
|
0cnd |
⊢ ( 𝐴 = 0 → 0 ∈ ℂ ) |
| 23 |
|
1cnd |
⊢ ( 𝐴 = 0 → 1 ∈ ℂ ) |
| 24 |
18
|
oveq1d |
⊢ ( 𝐴 = 0 → ( 𝐴 + 1 ) = ( 0 + 1 ) ) |
| 25 |
22 23 24
|
comraddd |
⊢ ( 𝐴 = 0 → ( 𝐴 + 1 ) = ( 1 + 0 ) ) |
| 26 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 27 |
25 26
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( 𝐴 + 1 ) = 1 ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 + 1 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 29 |
21 28
|
breqtrrd |
⊢ ( 𝐴 = 0 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = 0 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) ) |
| 31 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 33 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 34 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 1 ∈ ℝ ) |
| 35 |
33 34
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 36 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 37 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ∈ ℝ ) |
| 38 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 39 |
37 33 38
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 40 |
33
|
ltp1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 41 |
39 40
|
jctird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < 𝐴 → ( 0 ≤ 𝐴 ∧ 𝐴 < ( 𝐴 + 1 ) ) ) ) |
| 42 |
36 41
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 ≤ 𝐴 ∧ 𝐴 < ( 𝐴 + 1 ) ) ) |
| 43 |
34 35
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ) |
| 44 |
|
0le1 |
⊢ 0 ≤ 1 |
| 45 |
44
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 ≤ 1 ) |
| 46 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 47 |
37 33 34 36
|
ltadd1dd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 + 1 ) < ( 𝐴 + 1 ) ) |
| 48 |
46 47
|
eqbrtrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 1 < ( 𝐴 + 1 ) ) |
| 49 |
43 45 48
|
jca32 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( 0 ≤ 1 ∧ 1 < ( 𝐴 + 1 ) ) ) ) |
| 50 |
|
ltmul12a |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 𝐴 + 1 ) ) ) ∧ ( ( 1 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( 0 ≤ 1 ∧ 1 < ( 𝐴 + 1 ) ) ) ) → ( 𝐴 · 1 ) < ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ) |
| 51 |
33 35 42 49 50
|
syl1111anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 · 1 ) < ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ) |
| 52 |
32 51
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ) |
| 53 |
35
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 + 1 ) ∈ ℂ ) |
| 54 |
53
|
sqvald |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 𝐴 + 1 ) ↑ 2 ) = ( ( 𝐴 + 1 ) · ( 𝐴 + 1 ) ) ) |
| 55 |
52 54
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) ) |
| 57 |
3 56
|
mpand |
⊢ ( 𝜑 → ( 0 < 𝐴 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) ) |
| 58 |
15 30 57
|
3jaod |
⊢ ( 𝜑 → ( ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) ) |
| 59 |
5 58
|
mpd |
⊢ ( 𝜑 → 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ) |
| 60 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ ) |
| 61 |
60
|
resqcld |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) ↑ 2 ) ∈ ℝ ) |
| 62 |
3 61
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < ( ( 𝐴 + 1 ) ↑ 2 ) ↔ 0 < ( ( ( 𝐴 + 1 ) ↑ 2 ) − 𝐴 ) ) ) |
| 63 |
59 62
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( ( 𝐴 + 1 ) ↑ 2 ) − 𝐴 ) ) |