Step |
Hyp |
Ref |
Expression |
1 |
|
3cubeslem1.a |
|- ( ph -> A e. QQ ) |
2 |
|
qre |
|- ( A e. QQ -> A e. RR ) |
3 |
1 2
|
syl |
|- ( ph -> A e. RR ) |
4 |
|
0red |
|- ( ph -> 0 e. RR ) |
5 |
3 4
|
lttri4d |
|- ( ph -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
6 |
|
simpl |
|- ( ( A e. RR /\ A < 0 ) -> A e. RR ) |
7 |
|
0red |
|- ( ( A e. RR /\ A < 0 ) -> 0 e. RR ) |
8 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
9 |
8
|
adantr |
|- ( ( A e. RR /\ A < 0 ) -> ( A + 1 ) e. RR ) |
10 |
9
|
resqcld |
|- ( ( A e. RR /\ A < 0 ) -> ( ( A + 1 ) ^ 2 ) e. RR ) |
11 |
|
simpr |
|- ( ( A e. RR /\ A < 0 ) -> A < 0 ) |
12 |
9
|
sqge0d |
|- ( ( A e. RR /\ A < 0 ) -> 0 <_ ( ( A + 1 ) ^ 2 ) ) |
13 |
6 7 10 11 12
|
ltletrd |
|- ( ( A e. RR /\ A < 0 ) -> A < ( ( A + 1 ) ^ 2 ) ) |
14 |
13
|
a1i |
|- ( ph -> ( ( A e. RR /\ A < 0 ) -> A < ( ( A + 1 ) ^ 2 ) ) ) |
15 |
3 14
|
mpand |
|- ( ph -> ( A < 0 -> A < ( ( A + 1 ) ^ 2 ) ) ) |
16 |
|
0lt1 |
|- 0 < 1 |
17 |
16
|
a1i |
|- ( A = 0 -> 0 < 1 ) |
18 |
|
id |
|- ( A = 0 -> A = 0 ) |
19 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
20 |
19
|
a1i |
|- ( A = 0 -> ( 1 ^ 2 ) = 1 ) |
21 |
17 18 20
|
3brtr4d |
|- ( A = 0 -> A < ( 1 ^ 2 ) ) |
22 |
|
0cnd |
|- ( A = 0 -> 0 e. CC ) |
23 |
|
1cnd |
|- ( A = 0 -> 1 e. CC ) |
24 |
18
|
oveq1d |
|- ( A = 0 -> ( A + 1 ) = ( 0 + 1 ) ) |
25 |
22 23 24
|
comraddd |
|- ( A = 0 -> ( A + 1 ) = ( 1 + 0 ) ) |
26 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
27 |
25 26
|
eqtrdi |
|- ( A = 0 -> ( A + 1 ) = 1 ) |
28 |
27
|
oveq1d |
|- ( A = 0 -> ( ( A + 1 ) ^ 2 ) = ( 1 ^ 2 ) ) |
29 |
21 28
|
breqtrrd |
|- ( A = 0 -> A < ( ( A + 1 ) ^ 2 ) ) |
30 |
29
|
a1i |
|- ( ph -> ( A = 0 -> A < ( ( A + 1 ) ^ 2 ) ) ) |
31 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
32 |
31
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> ( A x. 1 ) = A ) |
33 |
|
simpl |
|- ( ( A e. RR /\ 0 < A ) -> A e. RR ) |
34 |
|
1red |
|- ( ( A e. RR /\ 0 < A ) -> 1 e. RR ) |
35 |
33 34
|
readdcld |
|- ( ( A e. RR /\ 0 < A ) -> ( A + 1 ) e. RR ) |
36 |
|
simpr |
|- ( ( A e. RR /\ 0 < A ) -> 0 < A ) |
37 |
|
0red |
|- ( ( A e. RR /\ 0 < A ) -> 0 e. RR ) |
38 |
|
ltle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
39 |
37 33 38
|
syl2anc |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 < A -> 0 <_ A ) ) |
40 |
33
|
ltp1d |
|- ( ( A e. RR /\ 0 < A ) -> A < ( A + 1 ) ) |
41 |
39 40
|
jctird |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 < A -> ( 0 <_ A /\ A < ( A + 1 ) ) ) ) |
42 |
36 41
|
mpd |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 <_ A /\ A < ( A + 1 ) ) ) |
43 |
34 35
|
jca |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 e. RR /\ ( A + 1 ) e. RR ) ) |
44 |
|
0le1 |
|- 0 <_ 1 |
45 |
44
|
a1i |
|- ( ( A e. RR /\ 0 < A ) -> 0 <_ 1 ) |
46 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
47 |
37 33 34 36
|
ltadd1dd |
|- ( ( A e. RR /\ 0 < A ) -> ( 0 + 1 ) < ( A + 1 ) ) |
48 |
46 47
|
eqbrtrid |
|- ( ( A e. RR /\ 0 < A ) -> 1 < ( A + 1 ) ) |
49 |
43 45 48
|
jca32 |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 e. RR /\ ( A + 1 ) e. RR ) /\ ( 0 <_ 1 /\ 1 < ( A + 1 ) ) ) ) |
50 |
|
ltmul12a |
|- ( ( ( ( A e. RR /\ ( A + 1 ) e. RR ) /\ ( 0 <_ A /\ A < ( A + 1 ) ) ) /\ ( ( 1 e. RR /\ ( A + 1 ) e. RR ) /\ ( 0 <_ 1 /\ 1 < ( A + 1 ) ) ) ) -> ( A x. 1 ) < ( ( A + 1 ) x. ( A + 1 ) ) ) |
51 |
33 35 42 49 50
|
syl1111anc |
|- ( ( A e. RR /\ 0 < A ) -> ( A x. 1 ) < ( ( A + 1 ) x. ( A + 1 ) ) ) |
52 |
32 51
|
eqbrtrrd |
|- ( ( A e. RR /\ 0 < A ) -> A < ( ( A + 1 ) x. ( A + 1 ) ) ) |
53 |
35
|
recnd |
|- ( ( A e. RR /\ 0 < A ) -> ( A + 1 ) e. CC ) |
54 |
53
|
sqvald |
|- ( ( A e. RR /\ 0 < A ) -> ( ( A + 1 ) ^ 2 ) = ( ( A + 1 ) x. ( A + 1 ) ) ) |
55 |
52 54
|
breqtrrd |
|- ( ( A e. RR /\ 0 < A ) -> A < ( ( A + 1 ) ^ 2 ) ) |
56 |
55
|
a1i |
|- ( ph -> ( ( A e. RR /\ 0 < A ) -> A < ( ( A + 1 ) ^ 2 ) ) ) |
57 |
3 56
|
mpand |
|- ( ph -> ( 0 < A -> A < ( ( A + 1 ) ^ 2 ) ) ) |
58 |
15 30 57
|
3jaod |
|- ( ph -> ( ( A < 0 \/ A = 0 \/ 0 < A ) -> A < ( ( A + 1 ) ^ 2 ) ) ) |
59 |
5 58
|
mpd |
|- ( ph -> A < ( ( A + 1 ) ^ 2 ) ) |
60 |
3 8
|
syl |
|- ( ph -> ( A + 1 ) e. RR ) |
61 |
60
|
resqcld |
|- ( ph -> ( ( A + 1 ) ^ 2 ) e. RR ) |
62 |
3 61
|
posdifd |
|- ( ph -> ( A < ( ( A + 1 ) ^ 2 ) <-> 0 < ( ( ( A + 1 ) ^ 2 ) - A ) ) ) |
63 |
59 62
|
mpbid |
|- ( ph -> 0 < ( ( ( A + 1 ) ^ 2 ) - A ) ) |