Step |
Hyp |
Ref |
Expression |
1 |
|
3cubeslem1.a |
|
2 |
|
qre |
|
3 |
1 2
|
syl |
|
4 |
|
0red |
|
5 |
3 4
|
lttri4d |
|
6 |
|
simpl |
|
7 |
|
0red |
|
8 |
|
peano2re |
|
9 |
8
|
adantr |
|
10 |
9
|
resqcld |
|
11 |
|
simpr |
|
12 |
9
|
sqge0d |
|
13 |
6 7 10 11 12
|
ltletrd |
|
14 |
13
|
a1i |
|
15 |
3 14
|
mpand |
|
16 |
|
0lt1 |
|
17 |
16
|
a1i |
|
18 |
|
id |
|
19 |
|
sq1 |
|
20 |
19
|
a1i |
|
21 |
17 18 20
|
3brtr4d |
|
22 |
|
0cnd |
|
23 |
|
1cnd |
|
24 |
18
|
oveq1d |
|
25 |
22 23 24
|
comraddd |
|
26 |
|
1p0e1 |
|
27 |
25 26
|
eqtrdi |
|
28 |
27
|
oveq1d |
|
29 |
21 28
|
breqtrrd |
|
30 |
29
|
a1i |
|
31 |
|
ax-1rid |
|
32 |
31
|
adantr |
|
33 |
|
simpl |
|
34 |
|
1red |
|
35 |
33 34
|
readdcld |
|
36 |
|
simpr |
|
37 |
|
0red |
|
38 |
|
ltle |
|
39 |
37 33 38
|
syl2anc |
|
40 |
33
|
ltp1d |
|
41 |
39 40
|
jctird |
|
42 |
36 41
|
mpd |
|
43 |
34 35
|
jca |
|
44 |
|
0le1 |
|
45 |
44
|
a1i |
|
46 |
|
1e0p1 |
|
47 |
37 33 34 36
|
ltadd1dd |
|
48 |
46 47
|
eqbrtrid |
|
49 |
43 45 48
|
jca32 |
|
50 |
|
ltmul12a |
|
51 |
33 35 42 49 50
|
syl1111anc |
|
52 |
32 51
|
eqbrtrrd |
|
53 |
35
|
recnd |
|
54 |
53
|
sqvald |
|
55 |
52 54
|
breqtrrd |
|
56 |
55
|
a1i |
|
57 |
3 56
|
mpand |
|
58 |
15 30 57
|
3jaod |
|
59 |
5 58
|
mpd |
|
60 |
3 8
|
syl |
|
61 |
60
|
resqcld |
|
62 |
3 61
|
posdifd |
|
63 |
59 62
|
mpbid |
|