Metamath Proof Explorer


Theorem 3cubeslem2

Description: Lemma for 3cubes . Used to show that the denominators in 3cubeslem4 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φA
Assertion 3cubeslem2 φ¬33A2+32A+3=0

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φA
2 3re 3
3 2 a1i φ3
4 3 recnd φ3
5 4 mullidd φ13=3
6 5 oveq2d φ32A2+3A3+13=32A2+3A3+3
7 4 sqcld φ32
8 qre AA
9 1 8 syl φA
10 9 resqcld φA2
11 10 recnd φA2
12 7 11 mulcld φ32A2
13 9 recnd φA
14 4 13 mulcld φ3A
15 12 14 addcld φ32A2+3A
16 1cnd φ1
17 15 16 4 adddird φ32A2+3A+13=32A2+3A3+13
18 4 13 4 mulassd φ3A3=3A3
19 18 oveq2d φ32A23+3A3=32A23+3A3
20 19 oveq1d φ32A23+3A3+3=32A23+3A3+3
21 12 14 4 adddird φ32A2+3A3=32A23+3A3
22 21 oveq1d φ32A2+3A3+3=32A23+3A3+3
23 4 4 13 mulassd φ33A=33A
24 23 oveq2d φ32A23+33A=32A23+33A
25 24 oveq1d φ32A23+33A+3=32A23+33A+3
26 11 4 mulcomd φA23=3A2
27 26 oveq2d φ32A23=323A2
28 27 oveq1d φ32A23+33A=323A2+33A
29 28 oveq1d φ32A23+33A+3=323A2+33A+3
30 7 11 4 mulassd φ32A23=32A23
31 30 oveq1d φ32A23+33A=32A23+33A
32 31 oveq1d φ32A23+33A+3=32A23+33A+3
33 df-3 3=2+1
34 33 a1i φ3=2+1
35 34 oveq2d φ33=32+1
36 35 oveq1d φ33A2=32+1A2
37 36 oveq1d φ33A2+32A=32+1A2+32A
38 37 oveq1d φ33A2+32A+3=32+1A2+32A+3
39 2nn0 20
40 39 a1i φ20
41 4 40 expp1d φ32+1=323
42 41 oveq1d φ32+1A2=323A2
43 42 oveq1d φ32+1A2+32A=323A2+32A
44 43 oveq1d φ32+1A2+32A+3=323A2+32A+3
45 38 44 eqtrd φ33A2+32A+3=323A2+32A+3
46 4 sqvald φ32=33
47 46 oveq1d φ32A=33A
48 47 oveq2d φ323A2+32A=323A2+33A
49 48 oveq1d φ323A2+32A+3=323A2+33A+3
50 45 49 eqtrd φ33A2+32A+3=323A2+33A+3
51 7 4 11 mulassd φ323A2=323A2
52 51 oveq1d φ323A2+33A=323A2+33A
53 52 oveq1d φ323A2+33A+3=323A2+33A+3
54 50 53 eqtrd φ33A2+32A+3=323A2+33A+3
55 29 32 54 3eqtr4rd φ33A2+32A+3=32A23+33A+3
56 13 4 mulcomd φA3=3A
57 56 oveq2d φ3A3=33A
58 57 oveq2d φ32A23+3A3=32A23+33A
59 58 oveq1d φ32A23+3A3+3=32A23+33A+3
60 25 55 59 3eqtr4d φ33A2+32A+3=32A23+3A3+3
61 20 22 60 3eqtr4rd φ33A2+32A+3=32A2+3A3+3
62 6 17 61 3eqtr4rd φ33A2+32A+3=32A2+3A+13
63 14 mulridd φ3A1=3A
64 63 oveq2d φ23A1=23A
65 64 oveq2d φ3A2+23A1=3A2+23A
66 65 oveq1d φ3A2+23A1+12=3A2+23A+12
67 66 oveq1d φ3A2+23A1+12-3A=3A2+23A+12-3A
68 14 16 binom2d φ3A+12=3A2+23A1+12
69 68 oveq1d φ3A+123A=3A2+23A1+12-3A
70 14 2timesd φ23A=3A+3A
71 70 oveq2d φ3A2+23A=3A2+3A+3A
72 71 oveq1d φ3A2+23A+1=3A2+3A+3A+1
73 72 oveq1d φ3A2+23A+1-3A=3A2+3A+3A+1-3A
74 sq1 12=1
75 74 a1i φ12=1
76 75 oveq2d φ3A2+23A+12=3A2+23A+1
77 76 oveq1d φ3A2+23A+12-3A=3A2+23A+1-3A
78 14 16 addcomd φ3A+1=1+3A
79 78 oveq2d φ3A2+3A+3A+1=3A2+3A+1+3A
80 79 oveq1d φ3A2+3A+3A+1-3A=3A2+3A+1+3A-3A
81 4 13 sqmuld φ3A2=32A2
82 81 12 eqeltrd φ3A2
83 82 14 addcld φ3A2+3A
84 83 14 16 addassd φ3A2+3A+3A+1=3A2+3A+3A+1
85 84 oveq1d φ3A2+3A+3A+1-3A=3A2+3A+3A+1-3A
86 15 16 addcld φ32A2+3A+1
87 86 14 14 addsubassd φ32A2+3A+1+3A-3A=32A2+3A+1+3A3A
88 81 oveq1d φ3A2+3A=32A2+3A
89 88 oveq1d φ3A2+3A+1=32A2+3A+1
90 89 oveq1d φ3A2+3A+1+3A=32A2+3A+1+3A
91 90 oveq1d φ3A2+3A+1+3A-3A=32A2+3A+1+3A-3A
92 14 subidd φ3A3A=0
93 92 oveq2d φ32A2+3A+1+3A3A=32A2+3A+1+0
94 86 addridd φ32A2+3A+1+0=32A2+3A+1
95 93 94 eqtr2d φ32A2+3A+1=32A2+3A+1+3A3A
96 87 91 95 3eqtr4rd φ32A2+3A+1=3A2+3A+1+3A-3A
97 83 16 14 addassd φ3A2+3A+1+3A=3A2+3A+1+3A
98 97 oveq1d φ3A2+3A+1+3A-3A=3A2+3A+1+3A-3A
99 96 98 eqtrd φ32A2+3A+1=3A2+3A+1+3A-3A
100 80 85 99 3eqtr4rd φ32A2+3A+1=3A2+3A+3A+1-3A
101 82 14 14 addassd φ3A2+3A+3A=3A2+3A+3A
102 101 oveq1d φ3A2+3A+3A+1=3A2+3A+3A+1
103 102 oveq1d φ3A2+3A+3A+1-3A=3A2+3A+3A+1-3A
104 100 103 eqtrd φ32A2+3A+1=3A2+3A+3A+1-3A
105 73 77 104 3eqtr4rd φ32A2+3A+1=3A2+23A+12-3A
106 67 69 105 3eqtr4rd φ32A2+3A+1=3A+123A
107 106 oveq1d φ32A2+3A+13=3A+123A3
108 62 107 eqtrd φ33A2+32A+3=3A+123A3
109 3 9 remulcld φ3A
110 peano2re 3A3A+1
111 109 110 syl φ3A+1
112 111 resqcld φ3A+12
113 112 109 resubcld φ3A+123A
114 113 recnd φ3A+123A
115 3nn 3
116 nnq 33
117 115 116 ax-mp 3
118 qmulcl 3A3A
119 117 1 118 sylancr φ3A
120 119 3cubeslem1 φ0<3A+123A
121 120 gt0ne0d φ3A+123A0
122 3ne0 30
123 122 a1i φ30
124 114 4 121 123 mulne0d φ3A+123A30
125 108 124 eqnetrd φ33A2+32A+30
126 125 neneqd φ¬33A2+32A+3=0