Metamath Proof Explorer


Theorem 3cubeslem2

Description: Lemma for 3cubes . Used to show that the denominators in 3cubeslem4 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φ A
Assertion 3cubeslem2 φ ¬ 3 3 A 2 + 3 2 A + 3 = 0

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φ A
2 3re 3
3 2 a1i φ 3
4 3 recnd φ 3
5 4 mulid2d φ 1 3 = 3
6 5 oveq2d φ 3 2 A 2 + 3 A 3 + 1 3 = 3 2 A 2 + 3 A 3 + 3
7 4 sqcld φ 3 2
8 qre A A
9 1 8 syl φ A
10 9 resqcld φ A 2
11 10 recnd φ A 2
12 7 11 mulcld φ 3 2 A 2
13 9 recnd φ A
14 4 13 mulcld φ 3 A
15 12 14 addcld φ 3 2 A 2 + 3 A
16 1cnd φ 1
17 15 16 4 adddird φ 3 2 A 2 + 3 A + 1 3 = 3 2 A 2 + 3 A 3 + 1 3
18 4 13 4 mulassd φ 3 A 3 = 3 A 3
19 18 oveq2d φ 3 2 A 2 3 + 3 A 3 = 3 2 A 2 3 + 3 A 3
20 19 oveq1d φ 3 2 A 2 3 + 3 A 3 + 3 = 3 2 A 2 3 + 3 A 3 + 3
21 12 14 4 adddird φ 3 2 A 2 + 3 A 3 = 3 2 A 2 3 + 3 A 3
22 21 oveq1d φ 3 2 A 2 + 3 A 3 + 3 = 3 2 A 2 3 + 3 A 3 + 3
23 4 4 13 mulassd φ 3 3 A = 3 3 A
24 23 oveq2d φ 3 2 A 2 3 + 3 3 A = 3 2 A 2 3 + 3 3 A
25 24 oveq1d φ 3 2 A 2 3 + 3 3 A + 3 = 3 2 A 2 3 + 3 3 A + 3
26 11 4 mulcomd φ A 2 3 = 3 A 2
27 26 oveq2d φ 3 2 A 2 3 = 3 2 3 A 2
28 27 oveq1d φ 3 2 A 2 3 + 3 3 A = 3 2 3 A 2 + 3 3 A
29 28 oveq1d φ 3 2 A 2 3 + 3 3 A + 3 = 3 2 3 A 2 + 3 3 A + 3
30 7 11 4 mulassd φ 3 2 A 2 3 = 3 2 A 2 3
31 30 oveq1d φ 3 2 A 2 3 + 3 3 A = 3 2 A 2 3 + 3 3 A
32 31 oveq1d φ 3 2 A 2 3 + 3 3 A + 3 = 3 2 A 2 3 + 3 3 A + 3
33 df-3 3 = 2 + 1
34 33 a1i φ 3 = 2 + 1
35 34 oveq2d φ 3 3 = 3 2 + 1
36 35 oveq1d φ 3 3 A 2 = 3 2 + 1 A 2
37 36 oveq1d φ 3 3 A 2 + 3 2 A = 3 2 + 1 A 2 + 3 2 A
38 37 oveq1d φ 3 3 A 2 + 3 2 A + 3 = 3 2 + 1 A 2 + 3 2 A + 3
39 2nn0 2 0
40 39 a1i φ 2 0
41 4 40 expp1d φ 3 2 + 1 = 3 2 3
42 41 oveq1d φ 3 2 + 1 A 2 = 3 2 3 A 2
43 42 oveq1d φ 3 2 + 1 A 2 + 3 2 A = 3 2 3 A 2 + 3 2 A
44 43 oveq1d φ 3 2 + 1 A 2 + 3 2 A + 3 = 3 2 3 A 2 + 3 2 A + 3
45 38 44 eqtrd φ 3 3 A 2 + 3 2 A + 3 = 3 2 3 A 2 + 3 2 A + 3
46 4 sqvald φ 3 2 = 3 3
47 46 oveq1d φ 3 2 A = 3 3 A
48 47 oveq2d φ 3 2 3 A 2 + 3 2 A = 3 2 3 A 2 + 3 3 A
49 48 oveq1d φ 3 2 3 A 2 + 3 2 A + 3 = 3 2 3 A 2 + 3 3 A + 3
50 45 49 eqtrd φ 3 3 A 2 + 3 2 A + 3 = 3 2 3 A 2 + 3 3 A + 3
51 7 4 11 mulassd φ 3 2 3 A 2 = 3 2 3 A 2
52 51 oveq1d φ 3 2 3 A 2 + 3 3 A = 3 2 3 A 2 + 3 3 A
53 52 oveq1d φ 3 2 3 A 2 + 3 3 A + 3 = 3 2 3 A 2 + 3 3 A + 3
54 50 53 eqtrd φ 3 3 A 2 + 3 2 A + 3 = 3 2 3 A 2 + 3 3 A + 3
55 29 32 54 3eqtr4rd φ 3 3 A 2 + 3 2 A + 3 = 3 2 A 2 3 + 3 3 A + 3
56 13 4 mulcomd φ A 3 = 3 A
57 56 oveq2d φ 3 A 3 = 3 3 A
58 57 oveq2d φ 3 2 A 2 3 + 3 A 3 = 3 2 A 2 3 + 3 3 A
59 58 oveq1d φ 3 2 A 2 3 + 3 A 3 + 3 = 3 2 A 2 3 + 3 3 A + 3
60 25 55 59 3eqtr4d φ 3 3 A 2 + 3 2 A + 3 = 3 2 A 2 3 + 3 A 3 + 3
61 20 22 60 3eqtr4rd φ 3 3 A 2 + 3 2 A + 3 = 3 2 A 2 + 3 A 3 + 3
62 6 17 61 3eqtr4rd φ 3 3 A 2 + 3 2 A + 3 = 3 2 A 2 + 3 A + 1 3
63 14 mulid1d φ 3 A 1 = 3 A
64 63 oveq2d φ 2 3 A 1 = 2 3 A
65 64 oveq2d φ 3 A 2 + 2 3 A 1 = 3 A 2 + 2 3 A
66 65 oveq1d φ 3 A 2 + 2 3 A 1 + 1 2 = 3 A 2 + 2 3 A + 1 2
67 66 oveq1d φ 3 A 2 + 2 3 A 1 + 1 2 - 3 A = 3 A 2 + 2 3 A + 1 2 - 3 A
68 14 16 binom2d φ 3 A + 1 2 = 3 A 2 + 2 3 A 1 + 1 2
69 68 oveq1d φ 3 A + 1 2 3 A = 3 A 2 + 2 3 A 1 + 1 2 - 3 A
70 14 2timesd φ 2 3 A = 3 A + 3 A
71 70 oveq2d φ 3 A 2 + 2 3 A = 3 A 2 + 3 A + 3 A
72 71 oveq1d φ 3 A 2 + 2 3 A + 1 = 3 A 2 + 3 A + 3 A + 1
73 72 oveq1d φ 3 A 2 + 2 3 A + 1 - 3 A = 3 A 2 + 3 A + 3 A + 1 - 3 A
74 sq1 1 2 = 1
75 74 a1i φ 1 2 = 1
76 75 oveq2d φ 3 A 2 + 2 3 A + 1 2 = 3 A 2 + 2 3 A + 1
77 76 oveq1d φ 3 A 2 + 2 3 A + 1 2 - 3 A = 3 A 2 + 2 3 A + 1 - 3 A
78 14 16 addcomd φ 3 A + 1 = 1 + 3 A
79 78 oveq2d φ 3 A 2 + 3 A + 3 A + 1 = 3 A 2 + 3 A + 1 + 3 A
80 79 oveq1d φ 3 A 2 + 3 A + 3 A + 1 - 3 A = 3 A 2 + 3 A + 1 + 3 A - 3 A
81 4 13 sqmuld φ 3 A 2 = 3 2 A 2
82 81 12 eqeltrd φ 3 A 2
83 82 14 addcld φ 3 A 2 + 3 A
84 83 14 16 addassd φ 3 A 2 + 3 A + 3 A + 1 = 3 A 2 + 3 A + 3 A + 1
85 84 oveq1d φ 3 A 2 + 3 A + 3 A + 1 - 3 A = 3 A 2 + 3 A + 3 A + 1 - 3 A
86 15 16 addcld φ 3 2 A 2 + 3 A + 1
87 86 14 14 addsubassd φ 3 2 A 2 + 3 A + 1 + 3 A - 3 A = 3 2 A 2 + 3 A + 1 + 3 A 3 A
88 81 oveq1d φ 3 A 2 + 3 A = 3 2 A 2 + 3 A
89 88 oveq1d φ 3 A 2 + 3 A + 1 = 3 2 A 2 + 3 A + 1
90 89 oveq1d φ 3 A 2 + 3 A + 1 + 3 A = 3 2 A 2 + 3 A + 1 + 3 A
91 90 oveq1d φ 3 A 2 + 3 A + 1 + 3 A - 3 A = 3 2 A 2 + 3 A + 1 + 3 A - 3 A
92 14 subidd φ 3 A 3 A = 0
93 92 oveq2d φ 3 2 A 2 + 3 A + 1 + 3 A 3 A = 3 2 A 2 + 3 A + 1 + 0
94 86 addid1d φ 3 2 A 2 + 3 A + 1 + 0 = 3 2 A 2 + 3 A + 1
95 93 94 eqtr2d φ 3 2 A 2 + 3 A + 1 = 3 2 A 2 + 3 A + 1 + 3 A 3 A
96 87 91 95 3eqtr4rd φ 3 2 A 2 + 3 A + 1 = 3 A 2 + 3 A + 1 + 3 A - 3 A
97 83 16 14 addassd φ 3 A 2 + 3 A + 1 + 3 A = 3 A 2 + 3 A + 1 + 3 A
98 97 oveq1d φ 3 A 2 + 3 A + 1 + 3 A - 3 A = 3 A 2 + 3 A + 1 + 3 A - 3 A
99 96 98 eqtrd φ 3 2 A 2 + 3 A + 1 = 3 A 2 + 3 A + 1 + 3 A - 3 A
100 80 85 99 3eqtr4rd φ 3 2 A 2 + 3 A + 1 = 3 A 2 + 3 A + 3 A + 1 - 3 A
101 82 14 14 addassd φ 3 A 2 + 3 A + 3 A = 3 A 2 + 3 A + 3 A
102 101 oveq1d φ 3 A 2 + 3 A + 3 A + 1 = 3 A 2 + 3 A + 3 A + 1
103 102 oveq1d φ 3 A 2 + 3 A + 3 A + 1 - 3 A = 3 A 2 + 3 A + 3 A + 1 - 3 A
104 100 103 eqtrd φ 3 2 A 2 + 3 A + 1 = 3 A 2 + 3 A + 3 A + 1 - 3 A
105 73 77 104 3eqtr4rd φ 3 2 A 2 + 3 A + 1 = 3 A 2 + 2 3 A + 1 2 - 3 A
106 67 69 105 3eqtr4rd φ 3 2 A 2 + 3 A + 1 = 3 A + 1 2 3 A
107 106 oveq1d φ 3 2 A 2 + 3 A + 1 3 = 3 A + 1 2 3 A 3
108 62 107 eqtrd φ 3 3 A 2 + 3 2 A + 3 = 3 A + 1 2 3 A 3
109 3 9 remulcld φ 3 A
110 peano2re 3 A 3 A + 1
111 109 110 syl φ 3 A + 1
112 111 resqcld φ 3 A + 1 2
113 112 109 resubcld φ 3 A + 1 2 3 A
114 113 recnd φ 3 A + 1 2 3 A
115 3nn 3
116 nnq 3 3
117 115 116 ax-mp 3
118 qmulcl 3 A 3 A
119 117 1 118 sylancr φ 3 A
120 119 3cubeslem1 φ 0 < 3 A + 1 2 3 A
121 120 gt0ne0d φ 3 A + 1 2 3 A 0
122 3ne0 3 0
123 122 a1i φ 3 0
124 114 4 121 123 mulne0d φ 3 A + 1 2 3 A 3 0
125 108 124 eqnetrd φ 3 3 A 2 + 3 2 A + 3 0
126 125 neneqd φ ¬ 3 3 A 2 + 3 2 A + 3 = 0