Step |
Hyp |
Ref |
Expression |
1 |
|
3cubeslem1.a |
|
2 |
|
3re |
|
3 |
2
|
a1i |
|
4 |
3
|
recnd |
|
5 |
4
|
mulid2d |
|
6 |
5
|
oveq2d |
|
7 |
4
|
sqcld |
|
8 |
|
qre |
|
9 |
1 8
|
syl |
|
10 |
9
|
resqcld |
|
11 |
10
|
recnd |
|
12 |
7 11
|
mulcld |
|
13 |
9
|
recnd |
|
14 |
4 13
|
mulcld |
|
15 |
12 14
|
addcld |
|
16 |
|
1cnd |
|
17 |
15 16 4
|
adddird |
|
18 |
4 13 4
|
mulassd |
|
19 |
18
|
oveq2d |
|
20 |
19
|
oveq1d |
|
21 |
12 14 4
|
adddird |
|
22 |
21
|
oveq1d |
|
23 |
4 4 13
|
mulassd |
|
24 |
23
|
oveq2d |
|
25 |
24
|
oveq1d |
|
26 |
11 4
|
mulcomd |
|
27 |
26
|
oveq2d |
|
28 |
27
|
oveq1d |
|
29 |
28
|
oveq1d |
|
30 |
7 11 4
|
mulassd |
|
31 |
30
|
oveq1d |
|
32 |
31
|
oveq1d |
|
33 |
|
df-3 |
|
34 |
33
|
a1i |
|
35 |
34
|
oveq2d |
|
36 |
35
|
oveq1d |
|
37 |
36
|
oveq1d |
|
38 |
37
|
oveq1d |
|
39 |
|
2nn0 |
|
40 |
39
|
a1i |
|
41 |
4 40
|
expp1d |
|
42 |
41
|
oveq1d |
|
43 |
42
|
oveq1d |
|
44 |
43
|
oveq1d |
|
45 |
38 44
|
eqtrd |
|
46 |
4
|
sqvald |
|
47 |
46
|
oveq1d |
|
48 |
47
|
oveq2d |
|
49 |
48
|
oveq1d |
|
50 |
45 49
|
eqtrd |
|
51 |
7 4 11
|
mulassd |
|
52 |
51
|
oveq1d |
|
53 |
52
|
oveq1d |
|
54 |
50 53
|
eqtrd |
|
55 |
29 32 54
|
3eqtr4rd |
|
56 |
13 4
|
mulcomd |
|
57 |
56
|
oveq2d |
|
58 |
57
|
oveq2d |
|
59 |
58
|
oveq1d |
|
60 |
25 55 59
|
3eqtr4d |
|
61 |
20 22 60
|
3eqtr4rd |
|
62 |
6 17 61
|
3eqtr4rd |
|
63 |
14
|
mulid1d |
|
64 |
63
|
oveq2d |
|
65 |
64
|
oveq2d |
|
66 |
65
|
oveq1d |
|
67 |
66
|
oveq1d |
|
68 |
14 16
|
binom2d |
|
69 |
68
|
oveq1d |
|
70 |
14
|
2timesd |
|
71 |
70
|
oveq2d |
|
72 |
71
|
oveq1d |
|
73 |
72
|
oveq1d |
|
74 |
|
sq1 |
|
75 |
74
|
a1i |
|
76 |
75
|
oveq2d |
|
77 |
76
|
oveq1d |
|
78 |
14 16
|
addcomd |
|
79 |
78
|
oveq2d |
|
80 |
79
|
oveq1d |
|
81 |
4 13
|
sqmuld |
|
82 |
81 12
|
eqeltrd |
|
83 |
82 14
|
addcld |
|
84 |
83 14 16
|
addassd |
|
85 |
84
|
oveq1d |
|
86 |
15 16
|
addcld |
|
87 |
86 14 14
|
addsubassd |
|
88 |
81
|
oveq1d |
|
89 |
88
|
oveq1d |
|
90 |
89
|
oveq1d |
|
91 |
90
|
oveq1d |
|
92 |
14
|
subidd |
|
93 |
92
|
oveq2d |
|
94 |
86
|
addid1d |
|
95 |
93 94
|
eqtr2d |
|
96 |
87 91 95
|
3eqtr4rd |
|
97 |
83 16 14
|
addassd |
|
98 |
97
|
oveq1d |
|
99 |
96 98
|
eqtrd |
|
100 |
80 85 99
|
3eqtr4rd |
|
101 |
82 14 14
|
addassd |
|
102 |
101
|
oveq1d |
|
103 |
102
|
oveq1d |
|
104 |
100 103
|
eqtrd |
|
105 |
73 77 104
|
3eqtr4rd |
|
106 |
67 69 105
|
3eqtr4rd |
|
107 |
106
|
oveq1d |
|
108 |
62 107
|
eqtrd |
|
109 |
3 9
|
remulcld |
|
110 |
|
peano2re |
|
111 |
109 110
|
syl |
|
112 |
111
|
resqcld |
|
113 |
112 109
|
resubcld |
|
114 |
113
|
recnd |
|
115 |
|
3nn |
|
116 |
|
nnq |
|
117 |
115 116
|
ax-mp |
|
118 |
|
qmulcl |
|
119 |
117 1 118
|
sylancr |
|
120 |
119
|
3cubeslem1 |
|
121 |
120
|
gt0ne0d |
|
122 |
|
3ne0 |
|
123 |
122
|
a1i |
|
124 |
114 4 121 123
|
mulne0d |
|
125 |
108 124
|
eqnetrd |
|
126 |
125
|
neneqd |
|