| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cubeslem1.a |
|
| 2 |
|
3re |
|
| 3 |
2
|
a1i |
|
| 4 |
3
|
recnd |
|
| 5 |
4
|
mullidd |
|
| 6 |
5
|
oveq2d |
|
| 7 |
4
|
sqcld |
|
| 8 |
|
qre |
|
| 9 |
1 8
|
syl |
|
| 10 |
9
|
resqcld |
|
| 11 |
10
|
recnd |
|
| 12 |
7 11
|
mulcld |
|
| 13 |
9
|
recnd |
|
| 14 |
4 13
|
mulcld |
|
| 15 |
12 14
|
addcld |
|
| 16 |
|
1cnd |
|
| 17 |
15 16 4
|
adddird |
|
| 18 |
4 13 4
|
mulassd |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
oveq1d |
|
| 21 |
12 14 4
|
adddird |
|
| 22 |
21
|
oveq1d |
|
| 23 |
4 4 13
|
mulassd |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
11 4
|
mulcomd |
|
| 27 |
26
|
oveq2d |
|
| 28 |
27
|
oveq1d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
7 11 4
|
mulassd |
|
| 31 |
30
|
oveq1d |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
df-3 |
|
| 34 |
33
|
a1i |
|
| 35 |
34
|
oveq2d |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
oveq1d |
|
| 38 |
37
|
oveq1d |
|
| 39 |
|
2nn0 |
|
| 40 |
39
|
a1i |
|
| 41 |
4 40
|
expp1d |
|
| 42 |
41
|
oveq1d |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43
|
oveq1d |
|
| 45 |
38 44
|
eqtrd |
|
| 46 |
4
|
sqvald |
|
| 47 |
46
|
oveq1d |
|
| 48 |
47
|
oveq2d |
|
| 49 |
48
|
oveq1d |
|
| 50 |
45 49
|
eqtrd |
|
| 51 |
7 4 11
|
mulassd |
|
| 52 |
51
|
oveq1d |
|
| 53 |
52
|
oveq1d |
|
| 54 |
50 53
|
eqtrd |
|
| 55 |
29 32 54
|
3eqtr4rd |
|
| 56 |
13 4
|
mulcomd |
|
| 57 |
56
|
oveq2d |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
oveq1d |
|
| 60 |
25 55 59
|
3eqtr4d |
|
| 61 |
20 22 60
|
3eqtr4rd |
|
| 62 |
6 17 61
|
3eqtr4rd |
|
| 63 |
14
|
mulridd |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
oveq2d |
|
| 66 |
65
|
oveq1d |
|
| 67 |
66
|
oveq1d |
|
| 68 |
14 16
|
binom2d |
|
| 69 |
68
|
oveq1d |
|
| 70 |
14
|
2timesd |
|
| 71 |
70
|
oveq2d |
|
| 72 |
71
|
oveq1d |
|
| 73 |
72
|
oveq1d |
|
| 74 |
|
sq1 |
|
| 75 |
74
|
a1i |
|
| 76 |
75
|
oveq2d |
|
| 77 |
76
|
oveq1d |
|
| 78 |
14 16
|
addcomd |
|
| 79 |
78
|
oveq2d |
|
| 80 |
79
|
oveq1d |
|
| 81 |
4 13
|
sqmuld |
|
| 82 |
81 12
|
eqeltrd |
|
| 83 |
82 14
|
addcld |
|
| 84 |
83 14 16
|
addassd |
|
| 85 |
84
|
oveq1d |
|
| 86 |
15 16
|
addcld |
|
| 87 |
86 14 14
|
addsubassd |
|
| 88 |
81
|
oveq1d |
|
| 89 |
88
|
oveq1d |
|
| 90 |
89
|
oveq1d |
|
| 91 |
90
|
oveq1d |
|
| 92 |
14
|
subidd |
|
| 93 |
92
|
oveq2d |
|
| 94 |
86
|
addridd |
|
| 95 |
93 94
|
eqtr2d |
|
| 96 |
87 91 95
|
3eqtr4rd |
|
| 97 |
83 16 14
|
addassd |
|
| 98 |
97
|
oveq1d |
|
| 99 |
96 98
|
eqtrd |
|
| 100 |
80 85 99
|
3eqtr4rd |
|
| 101 |
82 14 14
|
addassd |
|
| 102 |
101
|
oveq1d |
|
| 103 |
102
|
oveq1d |
|
| 104 |
100 103
|
eqtrd |
|
| 105 |
73 77 104
|
3eqtr4rd |
|
| 106 |
67 69 105
|
3eqtr4rd |
|
| 107 |
106
|
oveq1d |
|
| 108 |
62 107
|
eqtrd |
|
| 109 |
3 9
|
remulcld |
|
| 110 |
|
peano2re |
|
| 111 |
109 110
|
syl |
|
| 112 |
111
|
resqcld |
|
| 113 |
112 109
|
resubcld |
|
| 114 |
113
|
recnd |
|
| 115 |
|
3nn |
|
| 116 |
|
nnq |
|
| 117 |
115 116
|
ax-mp |
|
| 118 |
|
qmulcl |
|
| 119 |
117 1 118
|
sylancr |
|
| 120 |
119
|
3cubeslem1 |
|
| 121 |
120
|
gt0ne0d |
|
| 122 |
|
3ne0 |
|
| 123 |
122
|
a1i |
|
| 124 |
114 4 121 123
|
mulne0d |
|
| 125 |
108 124
|
eqnetrd |
|
| 126 |
125
|
neneqd |
|