Metamath Proof Explorer


Theorem binom2d

Description: Deduction form of binom2. (Contributed by Igor Ieskov, 14-Dec-2023)

Ref Expression
Hypotheses binom2d.1 φ A
binom2d.2 φ B
Assertion binom2d φ A + B 2 = A 2 + 2 A B + B 2

Proof

Step Hyp Ref Expression
1 binom2d.1 φ A
2 binom2d.2 φ B
3 binom2 A B A + B 2 = A 2 + 2 A B + B 2
4 1 2 3 syl2anc φ A + B 2 = A 2 + 2 A B + B 2