Metamath Proof Explorer


Theorem cu3addd

Description: Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023)

Ref Expression
Hypotheses cu3addd.1 φ A
cu3addd.2 φ B
cu3addd.3 φ C
Assertion cu3addd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A C 2 + 3 B C 2 + C 3

Proof

Step Hyp Ref Expression
1 cu3addd.1 φ A
2 cu3addd.2 φ B
3 cu3addd.3 φ C
4 1 2 addcld φ A + B
5 4 3 jca φ A + B C
6 binom3 A + B C A + B + C 3 = A + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3
7 6 a1i φ A + B C A + B + C 3 = A + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3
8 5 7 mpd φ A + B + C 3 = A + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3
9 binom3 A B A + B 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3
10 1 2 9 syl2anc φ A + B 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3
11 10 oveq1d φ A + B 3 + 3 A + B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A + B 2 C
12 11 oveq1d φ A + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3
13 8 12 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3
14 1 2 binom2d φ A + B 2 = A 2 + 2 A B + B 2
15 14 oveq1d φ A + B 2 C = A 2 + 2 A B + B 2 C
16 15 oveq2d φ 3 A + B 2 C = 3 A 2 + 2 A B + B 2 C
17 16 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A + B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B + B 2 C
18 17 oveq1d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A + B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B + B 2 C + 3 A + B C 2 + C 3
19 13 18 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B + B 2 C + 3 A + B C 2 + C 3
20 1 sqcld φ A 2
21 2cnd φ 2
22 1 2 mulcld φ A B
23 21 22 mulcld φ 2 A B
24 20 23 addcld φ A 2 + 2 A B
25 2 sqcld φ B 2
26 24 25 3 adddird φ A 2 + 2 A B + B 2 C = A 2 + 2 A B C + B 2 C
27 26 oveq2d φ 3 A 2 + 2 A B + B 2 C = 3 A 2 + 2 A B C + B 2 C
28 27 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B + B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B C + B 2 C
29 28 oveq1d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B + B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B C + B 2 C + 3 A + B C 2 + C 3
30 19 29 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B C + B 2 C + 3 A + B C 2 + C 3
31 20 23 3 adddird φ A 2 + 2 A B C = A 2 C + 2 A B C
32 31 oveq1d φ A 2 + 2 A B C + B 2 C = A 2 C + 2 A B C + B 2 C
33 32 oveq2d φ 3 A 2 + 2 A B C + B 2 C = 3 A 2 C + 2 A B C + B 2 C
34 33 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B C + B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + B 2 C
35 34 oveq1d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 + 2 A B C + B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + B 2 C + 3 A + B C 2 + C 3
36 30 35 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + B 2 C + 3 A + B C 2 + C 3
37 3cn 3
38 37 a1i φ 3
39 20 3 mulcld φ A 2 C
40 23 3 mulcld φ 2 A B C
41 39 40 addcld φ A 2 C + 2 A B C
42 25 3 mulcld φ B 2 C
43 38 41 42 adddid φ 3 A 2 C + 2 A B C + B 2 C = 3 A 2 C + 2 A B C + 3 B 2 C
44 43 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + 3 B 2 C
45 44 oveq1d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3
46 36 45 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3
47 38 39 40 adddid φ 3 A 2 C + 2 A B C = 3 A 2 C + 3 2 A B C
48 47 oveq1d φ 3 A 2 C + 2 A B C + 3 B 2 C = 3 A 2 C + 3 2 A B C + 3 B 2 C
49 48 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + 3 B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C
50 49 oveq1d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3
51 46 50 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3
52 38 21 22 mulassd φ 3 2 A B = 3 2 A B
53 52 oveq1d φ 3 2 A B C = 3 2 A B C
54 38 23 3 mulassd φ 3 2 A B C = 3 2 A B C
55 53 54 eqtrd φ 3 2 A B C = 3 2 A B C
56 55 oveq2d φ 3 A 2 C + 3 2 A B C = 3 A 2 C + 3 2 A B C
57 56 oveq1d φ 3 A 2 C + 3 2 A B C + 3 B 2 C = 3 A 2 C + 3 2 A B C + 3 B 2 C
58 57 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C
59 58 eqcomd φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C
60 59 oveq1d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3
61 51 60 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3
62 3 sqcld φ C 2
63 1 2 62 adddird φ A + B C 2 = A C 2 + B C 2
64 63 oveq2d φ 3 A + B C 2 = 3 A C 2 + B C 2
65 64 oveq1d φ 3 A + B C 2 + C 3 = 3 A C 2 + B C 2 + C 3
66 65 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A C 2 + B C 2 + C 3
67 61 66 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A C 2 + B C 2 + C 3
68 1 62 mulcld φ A C 2
69 2 62 mulcld φ B C 2
70 38 68 69 adddid φ 3 A C 2 + B C 2 = 3 A C 2 + 3 B C 2
71 70 oveq1d φ 3 A C 2 + B C 2 + C 3 = 3 A C 2 + 3 B C 2 + C 3
72 71 oveq2d φ A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A C 2 + B C 2 + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A C 2 + 3 B C 2 + C 3
73 67 72 eqtrd φ A + B + C 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 + 3 A 2 C + 3 2 A B C + 3 B 2 C + 3 A C 2 + 3 B C 2 + C 3