Step |
Hyp |
Ref |
Expression |
1 |
|
cu3addd.1 |
|
2 |
|
cu3addd.2 |
|
3 |
|
cu3addd.3 |
|
4 |
1 2
|
addcld |
|
5 |
4 3
|
jca |
|
6 |
|
binom3 |
|
7 |
6
|
a1i |
|
8 |
5 7
|
mpd |
|
9 |
|
binom3 |
|
10 |
1 2 9
|
syl2anc |
|
11 |
10
|
oveq1d |
|
12 |
11
|
oveq1d |
|
13 |
8 12
|
eqtrd |
|
14 |
1 2
|
binom2d |
|
15 |
14
|
oveq1d |
|
16 |
15
|
oveq2d |
|
17 |
16
|
oveq2d |
|
18 |
17
|
oveq1d |
|
19 |
13 18
|
eqtrd |
|
20 |
1
|
sqcld |
|
21 |
|
2cnd |
|
22 |
1 2
|
mulcld |
|
23 |
21 22
|
mulcld |
|
24 |
20 23
|
addcld |
|
25 |
2
|
sqcld |
|
26 |
24 25 3
|
adddird |
|
27 |
26
|
oveq2d |
|
28 |
27
|
oveq2d |
|
29 |
28
|
oveq1d |
|
30 |
19 29
|
eqtrd |
|
31 |
20 23 3
|
adddird |
|
32 |
31
|
oveq1d |
|
33 |
32
|
oveq2d |
|
34 |
33
|
oveq2d |
|
35 |
34
|
oveq1d |
|
36 |
30 35
|
eqtrd |
|
37 |
|
3cn |
|
38 |
37
|
a1i |
|
39 |
20 3
|
mulcld |
|
40 |
23 3
|
mulcld |
|
41 |
39 40
|
addcld |
|
42 |
25 3
|
mulcld |
|
43 |
38 41 42
|
adddid |
|
44 |
43
|
oveq2d |
|
45 |
44
|
oveq1d |
|
46 |
36 45
|
eqtrd |
|
47 |
38 39 40
|
adddid |
|
48 |
47
|
oveq1d |
|
49 |
48
|
oveq2d |
|
50 |
49
|
oveq1d |
|
51 |
46 50
|
eqtrd |
|
52 |
38 21 22
|
mulassd |
|
53 |
52
|
oveq1d |
|
54 |
38 23 3
|
mulassd |
|
55 |
53 54
|
eqtrd |
|
56 |
55
|
oveq2d |
|
57 |
56
|
oveq1d |
|
58 |
57
|
oveq2d |
|
59 |
58
|
eqcomd |
|
60 |
59
|
oveq1d |
|
61 |
51 60
|
eqtrd |
|
62 |
3
|
sqcld |
|
63 |
1 2 62
|
adddird |
|
64 |
63
|
oveq2d |
|
65 |
64
|
oveq1d |
|
66 |
65
|
oveq2d |
|
67 |
61 66
|
eqtrd |
|
68 |
1 62
|
mulcld |
|
69 |
2 62
|
mulcld |
|
70 |
38 68 69
|
adddid |
|
71 |
70
|
oveq1d |
|
72 |
71
|
oveq2d |
|
73 |
67 72
|
eqtrd |
|