Step |
Hyp |
Ref |
Expression |
1 |
|
cu3addd.1 |
|- ( ph -> A e. CC ) |
2 |
|
cu3addd.2 |
|- ( ph -> B e. CC ) |
3 |
|
cu3addd.3 |
|- ( ph -> C e. CC ) |
4 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
5 |
4 3
|
jca |
|- ( ph -> ( ( A + B ) e. CC /\ C e. CC ) ) |
6 |
|
binom3 |
|- ( ( ( A + B ) e. CC /\ C e. CC ) -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( A + B ) ^ 3 ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
7 |
6
|
a1i |
|- ( ph -> ( ( ( A + B ) e. CC /\ C e. CC ) -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( A + B ) ^ 3 ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) ) |
8 |
5 7
|
mpd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( A + B ) ^ 3 ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
9 |
|
binom3 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 3 ) = ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) |
10 |
1 2 9
|
syl2anc |
|- ( ph -> ( ( A + B ) ^ 3 ) = ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) |
11 |
10
|
oveq1d |
|- ( ph -> ( ( ( A + B ) ^ 3 ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( ( ( A + B ) ^ 3 ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
13 |
8 12
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
14 |
1 2
|
binom2d |
|- ( ph -> ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( ( A + B ) ^ 2 ) x. C ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) = ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) ) ) |
18 |
17
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( A + B ) ^ 2 ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
19 |
13 18
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
20 |
1
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
21 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
22 |
1 2
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
23 |
21 22
|
mulcld |
|- ( ph -> ( 2 x. ( A x. B ) ) e. CC ) |
24 |
20 23
|
addcld |
|- ( ph -> ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) e. CC ) |
25 |
2
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
26 |
24 25 3
|
adddird |
|- ( ph -> ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
27 |
26
|
oveq2d |
|- ( ph -> ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) = ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) ) |
28 |
27
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) ) ) |
29 |
28
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. C ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
30 |
19 29
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
31 |
20 23 3
|
adddird |
|- ( ph -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) = ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) |
32 |
31
|
oveq1d |
|- ( ph -> ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) |
33 |
32
|
oveq2d |
|- ( ph -> ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) = ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) ) |
34 |
33
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) ) ) |
35 |
34
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
36 |
30 35
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
37 |
|
3cn |
|- 3 e. CC |
38 |
37
|
a1i |
|- ( ph -> 3 e. CC ) |
39 |
20 3
|
mulcld |
|- ( ph -> ( ( A ^ 2 ) x. C ) e. CC ) |
40 |
23 3
|
mulcld |
|- ( ph -> ( ( 2 x. ( A x. B ) ) x. C ) e. CC ) |
41 |
39 40
|
addcld |
|- ( ph -> ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) e. CC ) |
42 |
25 3
|
mulcld |
|- ( ph -> ( ( B ^ 2 ) x. C ) e. CC ) |
43 |
38 41 42
|
adddid |
|- ( ph -> ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) = ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) |
44 |
43
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) ) |
45 |
44
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( 3 x. ( ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) + ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
46 |
36 45
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
47 |
38 39 40
|
adddid |
|- ( ph -> ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) = ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) ) |
48 |
47
|
oveq1d |
|- ( ph -> ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) = ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) |
49 |
48
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) ) |
50 |
49
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( 3 x. ( ( ( A ^ 2 ) x. C ) + ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
51 |
46 50
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
52 |
38 21 22
|
mulassd |
|- ( ph -> ( ( 3 x. 2 ) x. ( A x. B ) ) = ( 3 x. ( 2 x. ( A x. B ) ) ) ) |
53 |
52
|
oveq1d |
|- ( ph -> ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) = ( ( 3 x. ( 2 x. ( A x. B ) ) ) x. C ) ) |
54 |
38 23 3
|
mulassd |
|- ( ph -> ( ( 3 x. ( 2 x. ( A x. B ) ) ) x. C ) = ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) |
55 |
53 54
|
eqtrd |
|- ( ph -> ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) = ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) |
56 |
55
|
oveq2d |
|- ( ph -> ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) = ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) ) |
57 |
56
|
oveq1d |
|- ( ph -> ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) = ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) |
58 |
57
|
oveq2d |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) ) |
59 |
58
|
eqcomd |
|- ( ph -> ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) = ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) ) |
60 |
59
|
oveq1d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( 3 x. ( ( 2 x. ( A x. B ) ) x. C ) ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
61 |
51 60
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) ) |
62 |
3
|
sqcld |
|- ( ph -> ( C ^ 2 ) e. CC ) |
63 |
1 2 62
|
adddird |
|- ( ph -> ( ( A + B ) x. ( C ^ 2 ) ) = ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) |
64 |
63
|
oveq2d |
|- ( ph -> ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) = ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) ) |
65 |
64
|
oveq1d |
|- ( ph -> ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) = ( ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) |
66 |
65
|
oveq2d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A + B ) x. ( C ^ 2 ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) ) |
67 |
61 66
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) ) |
68 |
1 62
|
mulcld |
|- ( ph -> ( A x. ( C ^ 2 ) ) e. CC ) |
69 |
2 62
|
mulcld |
|- ( ph -> ( B x. ( C ^ 2 ) ) e. CC ) |
70 |
38 68 69
|
adddid |
|- ( ph -> ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) = ( ( 3 x. ( A x. ( C ^ 2 ) ) ) + ( 3 x. ( B x. ( C ^ 2 ) ) ) ) ) |
71 |
70
|
oveq1d |
|- ( ph -> ( ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) = ( ( ( 3 x. ( A x. ( C ^ 2 ) ) ) + ( 3 x. ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) |
72 |
71
|
oveq2d |
|- ( ph -> ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( 3 x. ( ( A x. ( C ^ 2 ) ) + ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( ( 3 x. ( A x. ( C ^ 2 ) ) ) + ( 3 x. ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) ) |
73 |
67 72
|
eqtrd |
|- ( ph -> ( ( ( A + B ) + C ) ^ 3 ) = ( ( ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) + ( ( ( 3 x. ( ( A ^ 2 ) x. C ) ) + ( ( ( 3 x. 2 ) x. ( A x. B ) ) x. C ) ) + ( 3 x. ( ( B ^ 2 ) x. C ) ) ) ) + ( ( ( 3 x. ( A x. ( C ^ 2 ) ) ) + ( 3 x. ( B x. ( C ^ 2 ) ) ) ) + ( C ^ 3 ) ) ) ) |