| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 2 | 1 | oveq2i |  |-  ( ( A + B ) ^ 3 ) = ( ( A + B ) ^ ( 2 + 1 ) ) | 
						
							| 3 |  | addcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) | 
						
							| 4 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 5 |  | expp1 |  |-  ( ( ( A + B ) e. CC /\ 2 e. NN0 ) -> ( ( A + B ) ^ ( 2 + 1 ) ) = ( ( ( A + B ) ^ 2 ) x. ( A + B ) ) ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( 2 + 1 ) ) = ( ( ( A + B ) ^ 2 ) x. ( A + B ) ) ) | 
						
							| 7 | 2 6 | eqtrid |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 3 ) = ( ( ( A + B ) ^ 2 ) x. ( A + B ) ) ) | 
						
							| 8 |  | sqcl |  |-  ( ( A + B ) e. CC -> ( ( A + B ) ^ 2 ) e. CC ) | 
						
							| 9 | 3 8 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 2 ) e. CC ) | 
						
							| 10 |  | simpl |  |-  ( ( A e. CC /\ B e. CC ) -> A e. CC ) | 
						
							| 11 |  | simpr |  |-  ( ( A e. CC /\ B e. CC ) -> B e. CC ) | 
						
							| 12 | 9 10 11 | adddid |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 2 ) x. ( A + B ) ) = ( ( ( ( A + B ) ^ 2 ) x. A ) + ( ( ( A + B ) ^ 2 ) x. B ) ) ) | 
						
							| 13 |  | binom2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 2 ) x. A ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. A ) ) | 
						
							| 15 |  | sqcl |  |-  ( A e. CC -> ( A ^ 2 ) e. CC ) | 
						
							| 16 | 10 15 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) | 
						
							| 17 |  | 2cn |  |-  2 e. CC | 
						
							| 18 |  | mulcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) | 
						
							| 19 |  | mulcl |  |-  ( ( 2 e. CC /\ ( A x. B ) e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) | 
						
							| 20 | 17 18 19 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. B ) ) e. CC ) | 
						
							| 21 | 16 20 | addcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) e. CC ) | 
						
							| 22 |  | sqcl |  |-  ( B e. CC -> ( B ^ 2 ) e. CC ) | 
						
							| 23 | 11 22 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) e. CC ) | 
						
							| 24 | 21 23 10 | adddird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. A ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. A ) + ( ( B ^ 2 ) x. A ) ) ) | 
						
							| 25 | 16 20 10 | adddird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. A ) = ( ( ( A ^ 2 ) x. A ) + ( ( 2 x. ( A x. B ) ) x. A ) ) ) | 
						
							| 26 | 1 | oveq2i |  |-  ( A ^ 3 ) = ( A ^ ( 2 + 1 ) ) | 
						
							| 27 |  | expp1 |  |-  ( ( A e. CC /\ 2 e. NN0 ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) | 
						
							| 28 | 10 4 27 | sylancl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A ^ ( 2 + 1 ) ) = ( ( A ^ 2 ) x. A ) ) | 
						
							| 29 | 26 28 | eqtrid |  |-  ( ( A e. CC /\ B e. CC ) -> ( A ^ 3 ) = ( ( A ^ 2 ) x. A ) ) | 
						
							| 30 |  | sqval |  |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 31 | 10 30 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. B ) = ( ( A x. A ) x. B ) ) | 
						
							| 33 | 10 10 11 | mul32d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. A ) x. B ) = ( ( A x. B ) x. A ) ) | 
						
							| 34 | 32 33 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. B ) = ( ( A x. B ) x. A ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( A ^ 2 ) x. B ) ) = ( 2 x. ( ( A x. B ) x. A ) ) ) | 
						
							| 36 |  | 2cnd |  |-  ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) | 
						
							| 37 | 36 18 10 | mulassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( A x. B ) ) x. A ) = ( 2 x. ( ( A x. B ) x. A ) ) ) | 
						
							| 38 | 35 37 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( A ^ 2 ) x. B ) ) = ( ( 2 x. ( A x. B ) ) x. A ) ) | 
						
							| 39 | 29 38 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) = ( ( ( A ^ 2 ) x. A ) + ( ( 2 x. ( A x. B ) ) x. A ) ) ) | 
						
							| 40 | 25 39 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. A ) = ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) ) | 
						
							| 41 | 23 10 | mulcomd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( B ^ 2 ) x. A ) = ( A x. ( B ^ 2 ) ) ) | 
						
							| 42 | 40 41 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. A ) + ( ( B ^ 2 ) x. A ) ) = ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( A x. ( B ^ 2 ) ) ) ) | 
						
							| 43 | 14 24 42 | 3eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 2 ) x. A ) = ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( A x. ( B ^ 2 ) ) ) ) | 
						
							| 44 | 13 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 2 ) x. B ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. B ) ) | 
						
							| 45 | 21 23 11 | adddird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) x. B ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. B ) + ( ( B ^ 2 ) x. B ) ) ) | 
						
							| 46 |  | sqval |  |-  ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 47 | 11 46 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. ( B ^ 2 ) ) = ( A x. ( B x. B ) ) ) | 
						
							| 49 | 10 11 11 | mulassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. B ) = ( A x. ( B x. B ) ) ) | 
						
							| 50 | 48 49 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. ( B ^ 2 ) ) = ( ( A x. B ) x. B ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. ( B ^ 2 ) ) ) = ( 2 x. ( ( A x. B ) x. B ) ) ) | 
						
							| 52 | 36 18 11 | mulassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( A x. B ) ) x. B ) = ( 2 x. ( ( A x. B ) x. B ) ) ) | 
						
							| 53 | 51 52 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. ( B ^ 2 ) ) ) = ( ( 2 x. ( A x. B ) ) x. B ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. B ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) = ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. B ) ) x. B ) ) ) | 
						
							| 55 | 16 20 11 | adddird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. B ) = ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. B ) ) x. B ) ) ) | 
						
							| 56 | 54 55 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) x. B ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. B ) ) | 
						
							| 57 | 1 | oveq2i |  |-  ( B ^ 3 ) = ( B ^ ( 2 + 1 ) ) | 
						
							| 58 |  | expp1 |  |-  ( ( B e. CC /\ 2 e. NN0 ) -> ( B ^ ( 2 + 1 ) ) = ( ( B ^ 2 ) x. B ) ) | 
						
							| 59 | 11 4 58 | sylancl |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ^ ( 2 + 1 ) ) = ( ( B ^ 2 ) x. B ) ) | 
						
							| 60 | 57 59 | eqtrid |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ^ 3 ) = ( ( B ^ 2 ) x. B ) ) | 
						
							| 61 | 56 60 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 2 ) x. B ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) + ( B ^ 3 ) ) = ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. B ) + ( ( B ^ 2 ) x. B ) ) ) | 
						
							| 62 | 16 11 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) x. B ) e. CC ) | 
						
							| 63 | 10 23 | mulcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. ( B ^ 2 ) ) e. CC ) | 
						
							| 64 |  | mulcl |  |-  ( ( 2 e. CC /\ ( A x. ( B ^ 2 ) ) e. CC ) -> ( 2 x. ( A x. ( B ^ 2 ) ) ) e. CC ) | 
						
							| 65 | 17 63 64 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( A x. ( B ^ 2 ) ) ) e. CC ) | 
						
							| 66 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 67 |  | expcl |  |-  ( ( B e. CC /\ 3 e. NN0 ) -> ( B ^ 3 ) e. CC ) | 
						
							| 68 | 11 66 67 | sylancl |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ^ 3 ) e. CC ) | 
						
							| 69 | 62 65 68 | addassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 2 ) x. B ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) + ( B ^ 3 ) ) = ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) | 
						
							| 70 | 61 69 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) x. B ) + ( ( B ^ 2 ) x. B ) ) = ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) | 
						
							| 71 | 44 45 70 | 3eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 2 ) x. B ) = ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) | 
						
							| 72 | 43 71 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A + B ) ^ 2 ) x. A ) + ( ( ( A + B ) ^ 2 ) x. B ) ) = ( ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( A x. ( B ^ 2 ) ) ) + ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) ) | 
						
							| 73 |  | expcl |  |-  ( ( A e. CC /\ 3 e. NN0 ) -> ( A ^ 3 ) e. CC ) | 
						
							| 74 | 10 66 73 | sylancl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A ^ 3 ) e. CC ) | 
						
							| 75 |  | mulcl |  |-  ( ( 2 e. CC /\ ( ( A ^ 2 ) x. B ) e. CC ) -> ( 2 x. ( ( A ^ 2 ) x. B ) ) e. CC ) | 
						
							| 76 | 17 62 75 | sylancr |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( A ^ 2 ) x. B ) ) e. CC ) | 
						
							| 77 | 74 76 | addcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) e. CC ) | 
						
							| 78 | 65 68 | addcld |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) e. CC ) | 
						
							| 79 | 77 63 62 78 | add4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( A x. ( B ^ 2 ) ) ) + ( ( ( A ^ 2 ) x. B ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) = ( ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( A ^ 2 ) x. B ) ) + ( ( A x. ( B ^ 2 ) ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) ) | 
						
							| 80 | 12 72 79 | 3eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ 2 ) x. ( A + B ) ) = ( ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( A ^ 2 ) x. B ) ) + ( ( A x. ( B ^ 2 ) ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) ) | 
						
							| 81 | 74 76 62 | addassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( A ^ 2 ) x. B ) ) = ( ( A ^ 3 ) + ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( ( A ^ 2 ) x. B ) ) ) ) | 
						
							| 82 | 1 | oveq1i |  |-  ( 3 x. ( ( A ^ 2 ) x. B ) ) = ( ( 2 + 1 ) x. ( ( A ^ 2 ) x. B ) ) | 
						
							| 83 |  | 1cnd |  |-  ( ( A e. CC /\ B e. CC ) -> 1 e. CC ) | 
						
							| 84 | 36 83 62 | adddird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 + 1 ) x. ( ( A ^ 2 ) x. B ) ) = ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( 1 x. ( ( A ^ 2 ) x. B ) ) ) ) | 
						
							| 85 | 82 84 | eqtrid |  |-  ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A ^ 2 ) x. B ) ) = ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( 1 x. ( ( A ^ 2 ) x. B ) ) ) ) | 
						
							| 86 | 62 | mullidd |  |-  ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 2 ) x. B ) ) = ( ( A ^ 2 ) x. B ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( 1 x. ( ( A ^ 2 ) x. B ) ) ) = ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( ( A ^ 2 ) x. B ) ) ) | 
						
							| 88 | 85 87 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( ( A ^ 2 ) x. B ) ) = ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( ( A ^ 2 ) x. B ) ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) = ( ( A ^ 3 ) + ( ( 2 x. ( ( A ^ 2 ) x. B ) ) + ( ( A ^ 2 ) x. B ) ) ) ) | 
						
							| 90 | 81 89 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( A ^ 2 ) x. B ) ) = ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) ) | 
						
							| 91 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 92 | 91 | oveq1i |  |-  ( ( 1 + 2 ) x. ( A x. ( B ^ 2 ) ) ) = ( 3 x. ( A x. ( B ^ 2 ) ) ) | 
						
							| 93 | 83 36 63 | adddird |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 1 + 2 ) x. ( A x. ( B ^ 2 ) ) ) = ( ( 1 x. ( A x. ( B ^ 2 ) ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) ) | 
						
							| 94 | 92 93 | eqtr3id |  |-  ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( A x. ( B ^ 2 ) ) ) = ( ( 1 x. ( A x. ( B ^ 2 ) ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) ) | 
						
							| 95 | 63 | mullidd |  |-  ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( A x. ( B ^ 2 ) ) ) = ( A x. ( B ^ 2 ) ) ) | 
						
							| 96 | 95 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 1 x. ( A x. ( B ^ 2 ) ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) = ( ( A x. ( B ^ 2 ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) ) | 
						
							| 97 | 94 96 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( 3 x. ( A x. ( B ^ 2 ) ) ) = ( ( A x. ( B ^ 2 ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) ) | 
						
							| 98 | 97 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) = ( ( ( A x. ( B ^ 2 ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) + ( B ^ 3 ) ) ) | 
						
							| 99 | 63 65 68 | addassd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. ( B ^ 2 ) ) + ( 2 x. ( A x. ( B ^ 2 ) ) ) ) + ( B ^ 3 ) ) = ( ( A x. ( B ^ 2 ) ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) | 
						
							| 100 | 98 99 | eqtr2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( B ^ 2 ) ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) = ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) | 
						
							| 101 | 90 100 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A ^ 3 ) + ( 2 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( A ^ 2 ) x. B ) ) + ( ( A x. ( B ^ 2 ) ) + ( ( 2 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) = ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) | 
						
							| 102 | 7 80 101 | 3eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 3 ) = ( ( ( A ^ 3 ) + ( 3 x. ( ( A ^ 2 ) x. B ) ) ) + ( ( 3 x. ( A x. ( B ^ 2 ) ) ) + ( B ^ 3 ) ) ) ) |