| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 2 |
1
|
oveq2i |
⊢ ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( 𝐴 + 𝐵 ) ↑ ( 2 + 1 ) ) |
| 3 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 5 |
|
expp1 |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ ( 2 + 1 ) ) = ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) ) |
| 7 |
2 6
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) ) |
| 8 |
|
sqcl |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( ( 𝐴 + 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 9 |
3 8
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) ∈ ℂ ) |
| 10 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 12 |
9 10 11
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) ) ) |
| 13 |
|
binom2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐴 ) ) |
| 15 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 16 |
10 15
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 17 |
|
2cn |
⊢ 2 ∈ ℂ |
| 18 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 19 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 20 |
17 18 19
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 21 |
16 20
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) ∈ ℂ ) |
| 22 |
|
sqcl |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 23 |
11 22
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 24 |
21 23 10
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) + ( ( 𝐵 ↑ 2 ) · 𝐴 ) ) ) |
| 25 |
16 20 10
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) ) ) |
| 26 |
1
|
oveq2i |
⊢ ( 𝐴 ↑ 3 ) = ( 𝐴 ↑ ( 2 + 1 ) ) |
| 27 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 𝐴 ↑ ( 2 + 1 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) |
| 28 |
10 4 27
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ ( 2 + 1 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) |
| 29 |
26 28
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 3 ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) |
| 30 |
|
sqval |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 31 |
10 30
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · 𝐵 ) = ( ( 𝐴 · 𝐴 ) · 𝐵 ) ) |
| 33 |
10 10 11
|
mul32d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐴 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) |
| 34 |
32 33
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) |
| 35 |
34
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) ) |
| 36 |
|
2cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℂ ) |
| 37 |
36 18 10
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐴 ) ) ) |
| 38 |
35 37
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) ) |
| 39 |
29 38
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐴 ) ) ) |
| 40 |
25 39
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) = ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 41 |
23 10
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐵 ↑ 2 ) · 𝐴 ) = ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) |
| 42 |
40 41
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐴 ) + ( ( 𝐵 ↑ 2 ) · 𝐴 ) ) = ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) |
| 43 |
14 24 42
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) = ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) |
| 44 |
13
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐵 ) ) |
| 45 |
21 23 11
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) · 𝐵 ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) + ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) ) |
| 46 |
|
sqval |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 47 |
11 46
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐵 ↑ 2 ) ) = ( 𝐴 · ( 𝐵 · 𝐵 ) ) ) |
| 49 |
10 11 11
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐵 ) = ( 𝐴 · ( 𝐵 · 𝐵 ) ) ) |
| 50 |
48 49
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 · 𝐵 ) · 𝐵 ) ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐵 ) ) ) |
| 52 |
36 18 11
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) = ( 2 · ( ( 𝐴 · 𝐵 ) · 𝐵 ) ) ) |
| 53 |
51 52
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) ) |
| 54 |
53
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) ) ) |
| 55 |
16 20 11
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · 𝐵 ) ) · 𝐵 ) ) ) |
| 56 |
54 55
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) ) |
| 57 |
1
|
oveq2i |
⊢ ( 𝐵 ↑ 3 ) = ( 𝐵 ↑ ( 2 + 1 ) ) |
| 58 |
|
expp1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( 𝐵 ↑ ( 2 + 1 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 59 |
11 4 58
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ ( 2 + 1 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 60 |
57 59
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 3 ) = ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) |
| 61 |
56 60
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) + ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) ) |
| 62 |
16 11
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) · 𝐵 ) ∈ ℂ ) |
| 63 |
10 23
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 64 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 𝐴 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
| 65 |
17 63 64
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
| 66 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 67 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
| 68 |
11 66 67
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 3 ) ∈ ℂ ) |
| 69 |
62 65 68
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 70 |
61 69
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) · 𝐵 ) + ( ( 𝐵 ↑ 2 ) · 𝐵 ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 71 |
44 45 70
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 72 |
43 71
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐴 ) + ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · 𝐵 ) ) = ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) ) |
| 73 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 74 |
10 66 73
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 75 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) · 𝐵 ) ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ∈ ℂ ) |
| 76 |
17 62 75
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ∈ ℂ ) |
| 77 |
74 76
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ∈ ℂ ) |
| 78 |
65 68
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ∈ ℂ ) |
| 79 |
77 63 62 78
|
add4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐵 ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) = ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) ) |
| 80 |
12 72 79
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) · ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) ) |
| 81 |
74 76 62
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 𝐴 ↑ 3 ) + ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 82 |
1
|
oveq1i |
⊢ ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 + 1 ) · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) |
| 83 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 1 ∈ ℂ ) |
| 84 |
36 83 62
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 + 1 ) · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 85 |
82 84
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 86 |
62
|
mullidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) |
| 87 |
86
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( 1 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) |
| 88 |
85 87
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) |
| 89 |
88
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) = ( ( 𝐴 ↑ 3 ) + ( ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 90 |
81 89
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) = ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) ) |
| 91 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
| 92 |
91
|
oveq1i |
⊢ ( ( 1 + 2 ) · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) |
| 93 |
83 36 63
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 2 ) · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 94 |
92 93
|
eqtr3id |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 95 |
63
|
mullidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) |
| 96 |
95
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 97 |
94 96
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) ) |
| 98 |
97
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) ) |
| 99 |
63 65 68
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) ) + ( 𝐵 ↑ 3 ) ) = ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 100 |
98 99
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) = ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) |
| 101 |
90 100
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 ↑ 3 ) + ( 2 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) + ( ( 𝐴 · ( 𝐵 ↑ 2 ) ) + ( ( 2 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |
| 102 |
7 80 101
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 3 ) = ( ( ( 𝐴 ↑ 3 ) + ( 3 · ( ( 𝐴 ↑ 2 ) · 𝐵 ) ) ) + ( ( 3 · ( 𝐴 · ( 𝐵 ↑ 2 ) ) ) + ( 𝐵 ↑ 3 ) ) ) ) |