Metamath Proof Explorer


Theorem binom2d

Description: Deduction form of binom2. (Contributed by Igor Ieskov, 14-Dec-2023)

Ref Expression
Hypotheses binom2d.1 ( 𝜑𝐴 ∈ ℂ )
binom2d.2 ( 𝜑𝐵 ∈ ℂ )
Assertion binom2d ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 binom2d.1 ( 𝜑𝐴 ∈ ℂ )
2 binom2d.2 ( 𝜑𝐵 ∈ ℂ )
3 binom2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 2 · ( 𝐴 · 𝐵 ) ) ) + ( 𝐵 ↑ 2 ) ) )