Metamath Proof Explorer
		
		
		
		Description:  Deduction form of binom2 .  (Contributed by Igor Ieskov, 14-Dec-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | binom2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | binom2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
				
					|  | Assertion | binom2d | ⊢  ( 𝜑  →  ( ( 𝐴  +  𝐵 ) ↑ 2 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 2  ·  ( 𝐴  ·  𝐵 ) ) )  +  ( 𝐵 ↑ 2 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | binom2d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | binom2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | binom2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 ) ↑ 2 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 2  ·  ( 𝐴  ·  𝐵 ) ) )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 ) ↑ 2 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 2  ·  ( 𝐴  ·  𝐵 ) ) )  +  ( 𝐵 ↑ 2 ) ) ) |