Metamath Proof Explorer


Theorem qre

Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002)

Ref Expression
Assertion qre AA

Proof

Step Hyp Ref Expression
1 elq AxyA=xy
2 zre xx
3 nnre yy
4 nnne0 yy0
5 3 4 jca yyy0
6 redivcl xyy0xy
7 6 3expb xyy0xy
8 2 5 7 syl2an xyxy
9 eleq1 A=xyAxy
10 8 9 syl5ibrcom xyA=xyA
11 10 rexlimivv xyA=xyA
12 1 11 sylbi AA