Step |
Hyp |
Ref |
Expression |
1 |
|
3cubeslem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
2 |
|
3re |
⊢ 3 ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
5 |
4
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 3 ) = 3 ) |
6 |
5
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) · 3 ) + ( 1 · 3 ) ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) · 3 ) + 3 ) ) |
7 |
4
|
sqcld |
⊢ ( 𝜑 → ( 3 ↑ 2 ) ∈ ℂ ) |
8 |
|
qre |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
10 |
9
|
resqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
12 |
7 11
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
13 |
9
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
14 |
4 13
|
mulcld |
⊢ ( 𝜑 → ( 3 · 𝐴 ) ∈ ℂ ) |
15 |
12 14
|
addcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) ∈ ℂ ) |
16 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
17 |
15 16 4
|
adddird |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) · 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) · 3 ) + ( 1 · 3 ) ) ) |
18 |
4 13 4
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · 3 ) = ( 3 · ( 𝐴 · 3 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 𝐴 ) · 3 ) ) = ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 𝐴 · 3 ) ) ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 𝐴 ) · 3 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 𝐴 · 3 ) ) ) + 3 ) ) |
21 |
12 14 4
|
adddird |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) · 3 ) = ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 𝐴 ) · 3 ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) · 3 ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 𝐴 ) · 3 ) ) + 3 ) ) |
23 |
4 4 13
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · 3 ) · 𝐴 ) = ( 3 · ( 3 · 𝐴 ) ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 3 ) · 𝐴 ) ) = ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 3 · 𝐴 ) ) ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 3 · 𝐴 ) ) ) + 3 ) ) |
26 |
11 4
|
mulcomd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 3 ) = ( 3 · ( 𝐴 ↑ 2 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · 3 ) ) = ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) ) |
28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · 3 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) = ( ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) + ( ( 3 · 3 ) · 𝐴 ) ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · 3 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) = ( ( ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
30 |
7 11 4
|
mulassd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) = ( ( 3 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · 3 ) ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 3 ) · 𝐴 ) ) = ( ( ( 3 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · 3 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) = ( ( ( ( 3 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · 3 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
33 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
34 |
33
|
a1i |
⊢ ( 𝜑 → 3 = ( 2 + 1 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ 3 ) = ( 3 ↑ ( 2 + 1 ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) = ( ( 3 ↑ ( 2 + 1 ) ) · ( 𝐴 ↑ 2 ) ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) = ( ( ( 3 ↑ ( 2 + 1 ) ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( 3 ↑ ( 2 + 1 ) ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ) |
39 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
40 |
39
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
41 |
4 40
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( 2 + 1 ) ) = ( ( 3 ↑ 2 ) · 3 ) ) |
42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 2 + 1 ) ) · ( 𝐴 ↑ 2 ) ) = ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ ( 2 + 1 ) ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) = ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) ) |
44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ ( 2 + 1 ) ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ) |
45 |
38 44
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ) |
46 |
4
|
sqvald |
⊢ ( 𝜑 → ( 3 ↑ 2 ) = ( 3 · 3 ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · 𝐴 ) = ( ( 3 · 3 ) · 𝐴 ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) = ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) ) |
49 |
48
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
50 |
45 49
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
51 |
7 4 11
|
mulassd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) = ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) = ( ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) + ( ( 3 · 3 ) · 𝐴 ) ) ) |
53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) = ( ( ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
54 |
50 53
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( 3 ↑ 2 ) · ( 3 · ( 𝐴 ↑ 2 ) ) ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
55 |
29 32 54
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( ( 3 · 3 ) · 𝐴 ) ) + 3 ) ) |
56 |
13 4
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 3 ) = ( 3 · 𝐴 ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 𝐴 · 3 ) ) = ( 3 · ( 3 · 𝐴 ) ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 𝐴 · 3 ) ) ) = ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 3 · 𝐴 ) ) ) ) |
59 |
58
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 𝐴 · 3 ) ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 3 · 𝐴 ) ) ) + 3 ) ) |
60 |
25 55 59
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) + ( 3 · ( 𝐴 · 3 ) ) ) + 3 ) ) |
61 |
20 22 60
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) · 3 ) + 3 ) ) |
62 |
6 17 61
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) · 3 ) ) |
63 |
14
|
mulid1d |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · 1 ) = ( 3 · 𝐴 ) ) |
64 |
63
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ( 3 · 𝐴 ) · 1 ) ) = ( 2 · ( 3 · 𝐴 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 3 · 𝐴 ) · 1 ) ) ) = ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) ) |
66 |
65
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 3 · 𝐴 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + ( 1 ↑ 2 ) ) ) |
67 |
66
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 3 · 𝐴 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + ( 1 ↑ 2 ) ) − ( 3 · 𝐴 ) ) ) |
68 |
14 16
|
binom2d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 3 · 𝐴 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( ( 3 · 𝐴 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − ( 3 · 𝐴 ) ) ) |
70 |
14
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( 3 · 𝐴 ) ) = ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) |
71 |
70
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) = ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) ) |
72 |
71
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + 1 ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) + 1 ) ) |
73 |
72
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + 1 ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) + 1 ) − ( 3 · 𝐴 ) ) ) |
74 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
75 |
74
|
a1i |
⊢ ( 𝜑 → ( 1 ↑ 2 ) = 1 ) |
76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + ( 1 ↑ 2 ) ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + 1 ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + ( 1 ↑ 2 ) ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + 1 ) − ( 3 · 𝐴 ) ) ) |
78 |
14 16
|
addcomd |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) + 1 ) = ( 1 + ( 3 · 𝐴 ) ) ) |
79 |
78
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( ( 3 · 𝐴 ) + 1 ) ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 1 + ( 3 · 𝐴 ) ) ) ) |
80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( ( 3 · 𝐴 ) + 1 ) ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 1 + ( 3 · 𝐴 ) ) ) − ( 3 · 𝐴 ) ) ) |
81 |
4 13
|
sqmuld |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) ↑ 2 ) = ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
82 |
81 12
|
eqeltrd |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) ↑ 2 ) ∈ ℂ ) |
83 |
82 14
|
addcld |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) ∈ ℂ ) |
84 |
83 14 16
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( ( 3 · 𝐴 ) + 1 ) ) ) |
85 |
84
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 3 · 𝐴 ) ) + 1 ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( ( 3 · 𝐴 ) + 1 ) ) − ( 3 · 𝐴 ) ) ) |
86 |
15 16
|
addcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) ∈ ℂ ) |
87 |
86 14 14
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + ( ( 3 · 𝐴 ) − ( 3 · 𝐴 ) ) ) ) |
88 |
81
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) = ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) ) |
89 |
88
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) ) |
90 |
89
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) ) |
91 |
90
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) − ( 3 · 𝐴 ) ) ) |
92 |
14
|
subidd |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) − ( 3 · 𝐴 ) ) = 0 ) |
93 |
92
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + ( ( 3 · 𝐴 ) − ( 3 · 𝐴 ) ) ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + 0 ) ) |
94 |
86
|
addid1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + 0 ) = ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) ) |
95 |
93 94
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) + ( ( 3 · 𝐴 ) − ( 3 · 𝐴 ) ) ) ) |
96 |
87 91 95
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) − ( 3 · 𝐴 ) ) ) |
97 |
83 16 14
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 1 + ( 3 · 𝐴 ) ) ) ) |
98 |
97
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + 1 ) + ( 3 · 𝐴 ) ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 1 + ( 3 · 𝐴 ) ) ) − ( 3 · 𝐴 ) ) ) |
99 |
96 98
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 1 + ( 3 · 𝐴 ) ) ) − ( 3 · 𝐴 ) ) ) |
100 |
80 85 99
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 3 · 𝐴 ) ) + 1 ) − ( 3 · 𝐴 ) ) ) |
101 |
82 14 14
|
addassd |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 3 · 𝐴 ) ) = ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) ) |
102 |
101
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) + 1 ) ) |
103 |
102
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 3 · 𝐴 ) ) + ( 3 · 𝐴 ) ) + 1 ) − ( 3 · 𝐴 ) ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) + 1 ) − ( 3 · 𝐴 ) ) ) |
104 |
100 103
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( ( 3 · 𝐴 ) + ( 3 · 𝐴 ) ) ) + 1 ) − ( 3 · 𝐴 ) ) ) |
105 |
73 77 104
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( ( 3 · 𝐴 ) ↑ 2 ) + ( 2 · ( 3 · 𝐴 ) ) ) + ( 1 ↑ 2 ) ) − ( 3 · 𝐴 ) ) ) |
106 |
67 69 105
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) = ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) ) |
107 |
106
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) + ( 3 · 𝐴 ) ) + 1 ) · 3 ) = ( ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) · 3 ) ) |
108 |
62 107
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = ( ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) · 3 ) ) |
109 |
3 9
|
remulcld |
⊢ ( 𝜑 → ( 3 · 𝐴 ) ∈ ℝ ) |
110 |
|
peano2re |
⊢ ( ( 3 · 𝐴 ) ∈ ℝ → ( ( 3 · 𝐴 ) + 1 ) ∈ ℝ ) |
111 |
109 110
|
syl |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) + 1 ) ∈ ℝ ) |
112 |
111
|
resqcld |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
113 |
112 109
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) ∈ ℝ ) |
114 |
113
|
recnd |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) ∈ ℂ ) |
115 |
|
3nn |
⊢ 3 ∈ ℕ |
116 |
|
nnq |
⊢ ( 3 ∈ ℕ → 3 ∈ ℚ ) |
117 |
115 116
|
ax-mp |
⊢ 3 ∈ ℚ |
118 |
|
qmulcl |
⊢ ( ( 3 ∈ ℚ ∧ 𝐴 ∈ ℚ ) → ( 3 · 𝐴 ) ∈ ℚ ) |
119 |
117 1 118
|
sylancr |
⊢ ( 𝜑 → ( 3 · 𝐴 ) ∈ ℚ ) |
120 |
119
|
3cubeslem1 |
⊢ ( 𝜑 → 0 < ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) ) |
121 |
120
|
gt0ne0d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) ≠ 0 ) |
122 |
|
3ne0 |
⊢ 3 ≠ 0 |
123 |
122
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
124 |
114 4 121 123
|
mulne0d |
⊢ ( 𝜑 → ( ( ( ( ( 3 · 𝐴 ) + 1 ) ↑ 2 ) − ( 3 · 𝐴 ) ) · 3 ) ≠ 0 ) |
125 |
108 124
|
eqnetrd |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ≠ 0 ) |
126 |
125
|
neneqd |
⊢ ( 𝜑 → ¬ ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) = 0 ) |