Step |
Hyp |
Ref |
Expression |
1 |
|
3cubeslem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
2 |
|
3cn |
⊢ 3 ∈ ℂ |
3 |
2
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
4 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
6 |
3 5
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ 3 ) ∈ ℂ ) |
7 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
9 |
8
|
sqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
10 |
6 9
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
11 |
3
|
sqcld |
⊢ ( 𝜑 → ( 3 ↑ 2 ) ∈ ℂ ) |
12 |
11 8
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · 𝐴 ) ∈ ℂ ) |
13 |
10 12 3
|
cu3addd |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) = ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
15 |
10 5
|
expcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ∈ ℂ ) |
16 |
10
|
sqcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) ∈ ℂ ) |
17 |
16 12
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ∈ ℂ ) |
18 |
3 17
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ∈ ℂ ) |
19 |
15 18
|
addcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ∈ ℂ ) |
20 |
12
|
sqcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ∈ ℂ ) |
21 |
10 20
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
22 |
3 21
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ∈ ℂ ) |
23 |
12 5
|
expcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ∈ ℂ ) |
24 |
22 23
|
addcld |
⊢ ( 𝜑 → ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ∈ ℂ ) |
25 |
19 24
|
addcld |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ∈ ℂ ) |
26 |
16 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ∈ ℂ ) |
27 |
3 26
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ∈ ℂ ) |
28 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
29 |
28
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
30 |
5 29
|
nn0mulcld |
⊢ ( 𝜑 → ( 3 · 2 ) ∈ ℕ0 ) |
31 |
30
|
nn0cnd |
⊢ ( 𝜑 → ( 3 · 2 ) ∈ ℂ ) |
32 |
10 12
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ∈ ℂ ) |
33 |
31 32
|
mulcld |
⊢ ( 𝜑 → ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ∈ ℂ ) |
34 |
33 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ∈ ℂ ) |
35 |
27 34
|
addcld |
⊢ ( 𝜑 → ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ∈ ℂ ) |
36 |
20 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ∈ ℂ ) |
37 |
3 36
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ∈ ℂ ) |
38 |
35 37
|
addcld |
⊢ ( 𝜑 → ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ∈ ℂ ) |
39 |
25 38
|
addcld |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ∈ ℂ ) |
40 |
10 11
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ∈ ℂ ) |
41 |
3 40
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ∈ ℂ ) |
42 |
12 11
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ∈ ℂ ) |
43 |
3 42
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ∈ ℂ ) |
44 |
41 43
|
addcld |
⊢ ( 𝜑 → ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ∈ ℂ ) |
45 |
44 6
|
addcld |
⊢ ( 𝜑 → ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ∈ ℂ ) |
46 |
8 39 45
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
47 |
8 25 38
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
48 |
47
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
49 |
46 48
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
50 |
8 19 24
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
53 |
49 52
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
54 |
8 15 18
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) ) |
55 |
54
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) |
56 |
55
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
58 |
53 57
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
59 |
8 22 23
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
60 |
59
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) |
61 |
60
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
63 |
58 62
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
64 |
8 35 37
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
66 |
65
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
67 |
63 66
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
68 |
8 27 34
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
72 |
67 71
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) ) |
73 |
8 44 6
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) = ( ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) |
74 |
73
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
75 |
72 74
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
76 |
8 41 43
|
adddid |
⊢ ( 𝜑 → ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( 𝐴 · ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
79 |
75 78
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) + ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) + ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) + ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) + ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 3 ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
80 |
14 79
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
81 |
8 15
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) ∈ ℂ ) |
82 |
8 18
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ∈ ℂ ) |
83 |
81 82
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) ∈ ℂ ) |
84 |
8 22
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) ∈ ℂ ) |
85 |
8 23
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ∈ ℂ ) |
86 |
84 85
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ∈ ℂ ) |
87 |
83 86
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ∈ ℂ ) |
88 |
8 27
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ∈ ℂ ) |
89 |
8 34
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ∈ ℂ ) |
90 |
88 89
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) ∈ ℂ ) |
91 |
8 37
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ∈ ℂ ) |
92 |
90 91
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ∈ ℂ ) |
93 |
8 41
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) ∈ ℂ ) |
94 |
8 43
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ∈ ℂ ) |
95 |
93 94
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
96 |
8 6
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 ↑ 3 ) ) ∈ ℂ ) |
97 |
95 96
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ∈ ℂ ) |
98 |
87 92 97
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) |
99 |
92 97
|
addcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ∈ ℂ ) |
100 |
83 86 99
|
addassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
101 |
98 100
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
102 |
86 99
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ∈ ℂ ) |
103 |
81 82 102
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
104 |
101 103
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
105 |
84 85 99
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
106 |
105
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
108 |
104 107
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
109 |
85 99
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
110 |
109
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) |
111 |
110
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) |
112 |
111
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) |
113 |
108 112
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) |
114 |
92 97 85
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) |
116 |
115
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) |
117 |
116
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) |
118 |
113 117
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) |
119 |
97 85
|
addcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ∈ ℂ ) |
120 |
90 91 119
|
addassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) |
121 |
120
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) |
122 |
121
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) |
123 |
122
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) ) |
124 |
118 123
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) ) |
125 |
91 119
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ∈ ℂ ) |
126 |
88 89 125
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) |
127 |
126
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) |
128 |
127
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) ) |
129 |
128
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) ) ) |
130 |
124 129
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) ) ) |
131 |
91 119
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) = ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
132 |
131
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
133 |
132
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) |
135 |
134
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) |
136 |
135
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
137 |
130 136
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
138 |
97 85
|
addcomd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
139 |
138
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
141 |
140
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) |
142 |
141
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) |
143 |
142
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) |
144 |
143
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
145 |
137 144
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
146 |
85 97 91
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
147 |
146
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) |
148 |
147
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) |
149 |
148
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) |
150 |
149
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
151 |
150
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) |
152 |
145 151
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) |
153 |
95 96 91
|
addassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) |
154 |
153
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) |
155 |
154
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) |
156 |
155
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) |
157 |
156
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
158 |
157
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) |
159 |
158
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) ) |
160 |
152 159
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) ) |
161 |
96 91
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ∈ ℂ ) |
162 |
93 94 161
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) |
163 |
162
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) |
164 |
163
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) |
165 |
164
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) |
166 |
165
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) |
167 |
166
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) ) |
168 |
167
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) ) ) |
169 |
160 168
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) ) ) |
170 |
94 161
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) = ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
171 |
170
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
172 |
171
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
173 |
172
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) |
174 |
173
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) |
175 |
174
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) |
176 |
175
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) |
177 |
176
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) |
178 |
169 177
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) |
179 |
96 91
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) |
180 |
179
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
181 |
180
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
183 |
182
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) |
184 |
183
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) |
185 |
184
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) |
186 |
185
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) |
187 |
186
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) |
188 |
178 187
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) |
189 |
91 96 94
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
190 |
189
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
191 |
190
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) |
192 |
191
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) |
193 |
192
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) |
194 |
193
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) |
195 |
194
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) |
196 |
195
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) |
197 |
188 196
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) |
198 |
96 94
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) |
199 |
198
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
200 |
199
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) |
201 |
200
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
202 |
201
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
203 |
202
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
204 |
203
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) |
205 |
204
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) |
206 |
205
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) ) |
207 |
197 206
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) ) |
208 |
80 207
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) ) |
209 |
94 96
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ∈ ℂ ) |
210 |
91 209
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ∈ ℂ ) |
211 |
93 210
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ∈ ℂ ) |
212 |
85 211
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ∈ ℂ ) |
213 |
89 212
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ∈ ℂ ) |
214 |
84 88 213
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) |
215 |
214
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) |
216 |
215
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) ) |
217 |
216
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) |
218 |
89 85 211
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
219 |
218
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
220 |
219
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) |
221 |
220
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) |
222 |
217 221
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) |
223 |
93 91 209
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) |
224 |
223
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
225 |
224
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
226 |
225
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
227 |
226
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) |
228 |
222 227
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
229 |
208 228
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
230 |
3 42
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) = ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) · 3 ) ) |
231 |
230
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
232 |
11 8
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · 𝐴 ) = ( 𝐴 · ( 3 ↑ 2 ) ) ) |
233 |
232
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) = ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) |
234 |
233
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) · 3 ) = ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) ) |
235 |
234
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) · 3 ) ) = ( 𝐴 · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
236 |
231 235
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
237 |
8 11
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 ↑ 2 ) ) ∈ ℂ ) |
238 |
237 11 3
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) = ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 3 ) ) ) |
239 |
238
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) ) = ( 𝐴 · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) |
240 |
236 239
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) |
241 |
11 3
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · 3 ) ∈ ℂ ) |
242 |
8 11 241
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 3 ) ) = ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) |
243 |
242
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 3 ) ) ) = ( 𝐴 · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) ) |
244 |
240 243
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) ) |
245 |
11 241
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ∈ ℂ ) |
246 |
8 8 245
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐴 ) · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) = ( 𝐴 · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) ) |
247 |
246
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 · 𝐴 ) · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) |
248 |
11 11 3
|
mulassd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) = ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) |
249 |
248
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐴 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) = ( ( 𝐴 · 𝐴 ) · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) |
250 |
247 249
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 · 𝐴 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
251 |
244 250
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 · 𝐴 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
252 |
8
|
sqvald |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
253 |
252
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐴 ) = ( 𝐴 ↑ 2 ) ) |
254 |
253
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐴 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
255 |
251 254
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) ) |
256 |
3 29 29
|
expaddd |
⊢ ( 𝜑 → ( 3 ↑ ( 2 + 2 ) ) = ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) ) |
257 |
256
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 2 + 2 ) ) · 3 ) = ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) |
258 |
257
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) = ( ( 3 ↑ ( 2 + 2 ) ) · 3 ) ) |
259 |
29 29
|
nn0addcld |
⊢ ( 𝜑 → ( 2 + 2 ) ∈ ℕ0 ) |
260 |
3 259
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 2 + 2 ) + 1 ) ) = ( ( 3 ↑ ( 2 + 2 ) ) · 3 ) ) |
261 |
258 260
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) = ( 3 ↑ ( ( 2 + 2 ) + 1 ) ) ) |
262 |
261
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) · ( 3 ↑ 2 ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ ( ( 2 + 2 ) + 1 ) ) ) ) |
263 |
255 262
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ ( ( 2 + 2 ) + 1 ) ) ) ) |
264 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
265 |
264
|
a1i |
⊢ ( 𝜑 → ( 2 + 2 ) = 4 ) |
266 |
265
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 + 2 ) + 1 ) = ( 4 + 1 ) ) |
267 |
266
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 2 + 2 ) + 1 ) ) = ( 3 ↑ ( 4 + 1 ) ) ) |
268 |
267
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 3 ↑ ( ( 2 + 2 ) + 1 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ ( 4 + 1 ) ) ) ) |
269 |
263 268
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ ( 4 + 1 ) ) ) ) |
270 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
271 |
270
|
a1i |
⊢ ( 𝜑 → ( 4 + 1 ) = 5 ) |
272 |
271
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 4 + 1 ) ) = ( 3 ↑ 5 ) ) |
273 |
272
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 3 ↑ ( 4 + 1 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) ) |
274 |
269 273
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) ) |
275 |
274
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) |
276 |
275
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
277 |
276
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) |
278 |
277
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
279 |
278
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
280 |
279
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
281 |
229 280
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
282 |
8 41
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) · 𝐴 ) ) |
283 |
3 40
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) = ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) ) |
284 |
283
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) · 𝐴 ) = ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) · 𝐴 ) ) |
285 |
282 284
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) · 𝐴 ) ) |
286 |
6 9
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) ) |
287 |
286
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) |
288 |
287
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · 3 ) ) |
289 |
288
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · 3 ) · 𝐴 ) ) |
290 |
285 289
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · 3 ) · 𝐴 ) ) |
291 |
9 6
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) ∈ ℂ ) |
292 |
291 11
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ∈ ℂ ) |
293 |
292 3 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · 3 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) |
294 |
290 293
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) |
295 |
3 8
|
mulcld |
⊢ ( 𝜑 → ( 3 · 𝐴 ) ∈ ℂ ) |
296 |
291 11 295
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) ) |
297 |
294 296
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) ) |
298 |
11 295
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ∈ ℂ ) |
299 |
9 6 298
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) ) ) |
300 |
297 299
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) ) ) |
301 |
6 298
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) = ( ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) |
302 |
301
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
303 |
300 302
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
304 |
11 295
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) = ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) ) |
305 |
304
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) = ( ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) |
306 |
305
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) ) |
307 |
303 306
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) ) |
308 |
3 8
|
mulcomd |
⊢ ( 𝜑 → ( 3 · 𝐴 ) = ( 𝐴 · 3 ) ) |
309 |
308
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) = ( ( 𝐴 · 3 ) · ( 3 ↑ 2 ) ) ) |
310 |
309
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) = ( ( ( 𝐴 · 3 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) |
311 |
310
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) ) |
312 |
307 311
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) ) |
313 |
8 3
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 3 ) ∈ ℂ ) |
314 |
313 11 6
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 3 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) = ( ( 𝐴 · 3 ) · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) |
315 |
314
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 2 ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) |
316 |
312 315
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) |
317 |
11 6
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ∈ ℂ ) |
318 |
8 3 317
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) = ( 𝐴 · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) |
319 |
318
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) ) |
320 |
316 319
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) ) |
321 |
320
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
322 |
3 317
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ∈ ℂ ) |
323 |
9 8 322
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) ) |
324 |
323
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
325 |
321 324
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
326 |
8 29
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 + 1 ) ) = ( ( 𝐴 ↑ 2 ) · 𝐴 ) ) |
327 |
326
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐴 ) = ( 𝐴 ↑ ( 2 + 1 ) ) ) |
328 |
327
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) |
329 |
328
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
330 |
325 329
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
331 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
332 |
331
|
a1i |
⊢ ( 𝜑 → ( 2 + 1 ) = 3 ) |
333 |
332
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 + 1 ) ) = ( 𝐴 ↑ 3 ) ) |
334 |
333
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) ) |
335 |
334
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
336 |
330 335
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
337 |
3 5 29
|
expaddd |
⊢ ( 𝜑 → ( 3 ↑ ( 2 + 3 ) ) = ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) |
338 |
337
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 2 + 3 ) ) ) = ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) |
339 |
338
|
eqcomd |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) = ( 3 · ( 3 ↑ ( 2 + 3 ) ) ) ) |
340 |
29 5
|
nn0addcld |
⊢ ( 𝜑 → ( 2 + 3 ) ∈ ℕ0 ) |
341 |
3 340
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( 2 + 3 ) ) ∈ ℂ ) |
342 |
3 341
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 2 + 3 ) ) ) = ( ( 3 ↑ ( 2 + 3 ) ) · 3 ) ) |
343 |
339 342
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) = ( ( 3 ↑ ( 2 + 3 ) ) · 3 ) ) |
344 |
3 340
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) = ( ( 3 ↑ ( 2 + 3 ) ) · 3 ) ) |
345 |
343 344
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) = ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) |
346 |
345
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) ) |
347 |
346
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 · ( ( 3 ↑ 2 ) · ( 3 ↑ 3 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
348 |
336 347
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
349 |
332
|
oveq2d |
⊢ ( 𝜑 → ( 2 + ( 2 + 1 ) ) = ( 2 + 3 ) ) |
350 |
349
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 + ( 2 + 1 ) ) + 1 ) = ( ( 2 + 3 ) + 1 ) ) |
351 |
350
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) = ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) |
352 |
351
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) ) |
353 |
352
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + 3 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
354 |
348 353
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
355 |
29
|
nn0cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
356 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
357 |
356
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
358 |
355 355 357
|
addassd |
⊢ ( 𝜑 → ( ( 2 + 2 ) + 1 ) = ( 2 + ( 2 + 1 ) ) ) |
359 |
358
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 + 2 ) + 1 ) + 1 ) = ( ( 2 + ( 2 + 1 ) ) + 1 ) ) |
360 |
359
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) = ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) ) |
361 |
360
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) ) ) |
362 |
361
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 2 + ( 2 + 1 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
363 |
354 362
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
364 |
266
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 + 2 ) + 1 ) + 1 ) = ( ( 4 + 1 ) + 1 ) ) |
365 |
364
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) = ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) |
366 |
365
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) ) |
367 |
366
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( ( 2 + 2 ) + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
368 |
363 367
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
369 |
271
|
oveq1d |
⊢ ( 𝜑 → ( ( 4 + 1 ) + 1 ) = ( 5 + 1 ) ) |
370 |
369
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) = ( 3 ↑ ( 5 + 1 ) ) ) |
371 |
370
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( 5 + 1 ) ) ) ) |
372 |
371
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( 5 + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
373 |
368 372
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( 5 + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
374 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
375 |
374
|
a1i |
⊢ ( 𝜑 → ( 5 + 1 ) = 6 ) |
376 |
375
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 5 + 1 ) ) = ( 3 ↑ 6 ) ) |
377 |
376
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( 5 + 1 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) ) |
378 |
377
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ ( 5 + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
379 |
373 378
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) ) |
380 |
11 8 29
|
mulexpd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) = ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
381 |
380
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) = ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) |
382 |
381
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) = ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) |
383 |
382
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) ) |
384 |
383
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) ) ) |
385 |
379 384
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) ) ) |
386 |
11
|
sqcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) ↑ 2 ) ∈ ℂ ) |
387 |
386 9
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
388 |
387 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ∈ ℂ ) |
389 |
3 388
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ∈ ℂ ) |
390 |
8 389
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) · 𝐴 ) ) |
391 |
3 388
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) = ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) · 3 ) ) |
392 |
391
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) · 𝐴 ) = ( ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
393 |
390 392
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
394 |
386 9
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
395 |
394
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) ) |
396 |
395
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) · 3 ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · 3 ) ) |
397 |
396
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) · 3 ) · 𝐴 ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
398 |
393 397
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
399 |
9 386
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ∈ ℂ ) |
400 |
399 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) ∈ ℂ ) |
401 |
400 3 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · 3 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · ( 3 · 𝐴 ) ) ) |
402 |
398 401
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · ( 3 · 𝐴 ) ) ) |
403 |
399 3 295
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · 3 ) · ( 3 · 𝐴 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · ( 3 · 𝐴 ) ) ) ) |
404 |
402 403
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · ( 3 · 𝐴 ) ) ) ) |
405 |
3 295
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 3 · 𝐴 ) ) ∈ ℂ ) |
406 |
9 386 405
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · ( 3 · 𝐴 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 3 · ( 3 · 𝐴 ) ) ) ) ) |
407 |
404 406
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 3 · ( 3 · 𝐴 ) ) ) ) ) |
408 |
386 405
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 3 · ( 3 · 𝐴 ) ) ) = ( ( 3 · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
409 |
408
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 3 · ( 3 · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
410 |
407 409
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
411 |
3 295
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 · 𝐴 ) ) = ( ( 3 · 𝐴 ) · 3 ) ) |
412 |
411
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) = ( ( ( 3 · 𝐴 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
413 |
412
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 3 · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
414 |
410 413
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
415 |
308
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · 3 ) = ( ( 𝐴 · 3 ) · 3 ) ) |
416 |
415
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) = ( ( ( 𝐴 · 3 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
417 |
416
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
418 |
414 417
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
419 |
313 3 386
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 3 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) = ( ( 𝐴 · 3 ) · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
420 |
419
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
421 |
418 420
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
422 |
3 386
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ∈ ℂ ) |
423 |
8 3 422
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
424 |
423
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
425 |
421 424
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
426 |
425
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) ) |
427 |
385 426
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) ) |
428 |
3 422
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ∈ ℂ ) |
429 |
9 8 428
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
430 |
429
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) ) |
431 |
427 430
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
432 |
327
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
433 |
432
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
434 |
431 433
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
435 |
333
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
436 |
435
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ ( 2 + 1 ) ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 3 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
437 |
434 436
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 3 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
438 |
8 5
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
439 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
440 |
439
|
a1i |
⊢ ( 𝜑 → 6 ∈ ℕ0 ) |
441 |
3 440
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ 6 ) ∈ ℂ ) |
442 |
438 441 428
|
adddid |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 3 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
443 |
442
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( 3 ↑ 6 ) ) + ( ( 𝐴 ↑ 3 ) · ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
444 |
437 443
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
445 |
3 29 29
|
expmuld |
⊢ ( 𝜑 → ( 3 ↑ ( 2 · 2 ) ) = ( ( 3 ↑ 2 ) ↑ 2 ) ) |
446 |
445
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 2 · 2 ) ) ) = ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
447 |
446
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ ( 2 · 2 ) ) ) ) = ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
448 |
447
|
eqcomd |
⊢ ( 𝜑 → ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 · ( 3 · ( 3 ↑ ( 2 · 2 ) ) ) ) ) |
449 |
29 29
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · 2 ) ∈ ℕ0 ) |
450 |
3 449
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( 2 · 2 ) ) ∈ ℂ ) |
451 |
3 450
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 2 · 2 ) ) ) = ( ( 3 ↑ ( 2 · 2 ) ) · 3 ) ) |
452 |
451
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ ( 2 · 2 ) ) ) ) = ( 3 · ( ( 3 ↑ ( 2 · 2 ) ) · 3 ) ) ) |
453 |
448 452
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 · ( ( 3 ↑ ( 2 · 2 ) ) · 3 ) ) ) |
454 |
3 449
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) = ( ( 3 ↑ ( 2 · 2 ) ) · 3 ) ) |
455 |
454
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) ) = ( 3 · ( ( 3 ↑ ( 2 · 2 ) ) · 3 ) ) ) |
456 |
453 455
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 · ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) ) ) |
457 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
458 |
457
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
459 |
449 458
|
nn0addcld |
⊢ ( 𝜑 → ( ( 2 · 2 ) + 1 ) ∈ ℕ0 ) |
460 |
3 459
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) ∈ ℂ ) |
461 |
3 460
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) ) = ( ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) · 3 ) ) |
462 |
456 461
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) · 3 ) ) |
463 |
3 459
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) = ( ( 3 ↑ ( ( 2 · 2 ) + 1 ) ) · 3 ) ) |
464 |
462 463
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) |
465 |
464
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) + ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) ) |
466 |
465
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 · ( 3 · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) ) ) |
467 |
444 466
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) ) ) |
468 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
469 |
468
|
a1i |
⊢ ( 𝜑 → ( 2 · 2 ) = 4 ) |
470 |
469
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 2 ) + 1 ) = ( 4 + 1 ) ) |
471 |
470
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 2 ) + 1 ) + 1 ) = ( ( 4 + 1 ) + 1 ) ) |
472 |
471
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) = ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) |
473 |
472
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) = ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) ) |
474 |
473
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) ) ) |
475 |
467 474
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) ) ) |
476 |
370
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) = ( ( 3 ↑ 6 ) + ( 3 ↑ ( 5 + 1 ) ) ) ) |
477 |
476
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( ( 4 + 1 ) + 1 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( 5 + 1 ) ) ) ) ) |
478 |
475 477
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( 5 + 1 ) ) ) ) ) |
479 |
376
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) + ( 3 ↑ ( 5 + 1 ) ) ) = ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) |
480 |
479
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ ( 5 + 1 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) ) |
481 |
478 480
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) ) |
482 |
481
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) |
483 |
482
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) |
484 |
483
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
485 |
484
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
486 |
485
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
487 |
281 486
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
488 |
8 34
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) · 𝐴 ) ) |
489 |
31 32
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) = ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) ) |
490 |
489
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) = ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) ) |
491 |
490
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) · 𝐴 ) ) |
492 |
488 491
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) · 𝐴 ) ) |
493 |
286
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) |
494 |
493
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) ) |
495 |
494
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) ) |
496 |
495
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) · 𝐴 ) ) |
497 |
492 496
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) · 𝐴 ) ) |
498 |
291 12
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ∈ ℂ ) |
499 |
498 31
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) ∈ ℂ ) |
500 |
499 3 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · ( 3 · 𝐴 ) ) ) |
501 |
497 500
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · ( 3 · 𝐴 ) ) ) |
502 |
498 31 295
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 2 ) ) · ( 3 · 𝐴 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) |
503 |
501 502
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) |
504 |
31 295
|
mulcld |
⊢ ( 𝜑 → ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ∈ ℂ ) |
505 |
291 12 504
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) ) |
506 |
503 505
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) ) |
507 |
12 504
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ∈ ℂ ) |
508 |
9 6 507
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) ) ) |
509 |
506 508
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) ) ) |
510 |
6 507
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) = ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) |
511 |
510
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) ) |
512 |
509 511
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) ) |
513 |
232
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) = ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) ) |
514 |
513
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) = ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) |
515 |
514
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) ) |
516 |
512 515
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) ) |
517 |
237 504 6
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) = ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
518 |
517
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) ) |
519 |
516 518
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) ) |
520 |
504 6
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ∈ ℂ ) |
521 |
8 11 520
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) = ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) ) |
522 |
521
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) ) ) |
523 |
519 522
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) ) ) |
524 |
11 520
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) = ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) |
525 |
524
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) = ( 𝐴 · ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) |
526 |
525
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
527 |
523 526
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
528 |
31 295
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) = ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) ) |
529 |
528
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) = ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) ) |
530 |
529
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) = ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) |
531 |
530
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) = ( 𝐴 · ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) |
532 |
531
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 3 · 2 ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
533 |
527 532
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
534 |
308
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) = ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) ) |
535 |
534
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) = ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) ) |
536 |
535
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) = ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) |
537 |
536
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) = ( 𝐴 · ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) |
538 |
537
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 3 · 𝐴 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
539 |
533 538
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
540 |
313 31
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) ∈ ℂ ) |
541 |
540 6 11
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) = ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) |
542 |
541
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) = ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) |
543 |
542
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( 3 ↑ 3 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
544 |
539 543
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
545 |
6 11
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ∈ ℂ ) |
546 |
313 31 545
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) = ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) |
547 |
546
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
548 |
547
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( 3 · 2 ) ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
549 |
544 548
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
550 |
31 545
|
mulcld |
⊢ ( 𝜑 → ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ∈ ℂ ) |
551 |
8 3 550
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
552 |
551
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) = ( 𝐴 · ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
553 |
552
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
554 |
549 553
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
555 |
3 355 545
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) = ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) |
556 |
555
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) = ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
557 |
556
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) = ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
558 |
557
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( 𝐴 · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
559 |
558
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( 3 · 2 ) · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) |
560 |
554 559
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) |
561 |
560
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
562 |
355 545
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ∈ ℂ ) |
563 |
3 562
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ∈ ℂ ) |
564 |
3 563
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
565 |
8 564
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ∈ ℂ ) |
566 |
9 8 565
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) ) |
567 |
566
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
568 |
561 567
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
569 |
9 8
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · 𝐴 ) ∈ ℂ ) |
570 |
569 8 564
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) ) |
571 |
570
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
572 |
568 571
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
573 |
327
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ ( 2 + 1 ) ) · 𝐴 ) ) |
574 |
29 458
|
nn0addcld |
⊢ ( 𝜑 → ( 2 + 1 ) ∈ ℕ0 ) |
575 |
8 574
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 + 1 ) ) · 𝐴 ) ) |
576 |
573 575
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) = ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) ) |
577 |
576
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
578 |
577
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
579 |
572 578
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
580 |
332
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 + 1 ) + 1 ) = ( 3 + 1 ) ) |
581 |
580
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) = ( 𝐴 ↑ ( 3 + 1 ) ) ) |
582 |
581
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
583 |
582
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ( 2 + 1 ) + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
584 |
579 583
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
585 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
586 |
585
|
a1i |
⊢ ( 𝜑 → ( 3 + 1 ) = 4 ) |
587 |
586
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 3 + 1 ) ) = ( 𝐴 ↑ 4 ) ) |
588 |
587
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
589 |
588
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
590 |
584 589
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
591 |
3 29 5
|
expaddd |
⊢ ( 𝜑 → ( 3 ↑ ( 3 + 2 ) ) = ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) |
592 |
591
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) = ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) |
593 |
592
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) = ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) |
594 |
593
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) = ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
595 |
594
|
eqcomd |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) = ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) ) |
596 |
595
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) ) ) |
597 |
596
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( ( 3 ↑ 3 ) · ( 3 ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
598 |
590 597
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
599 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
600 |
599
|
a1i |
⊢ ( 𝜑 → ( 3 + 2 ) = 5 ) |
601 |
600
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 3 + 2 ) ) = ( 3 ↑ 5 ) ) |
602 |
601
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) = ( 2 · ( 3 ↑ 5 ) ) ) |
603 |
602
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) = ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) |
604 |
603
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) = ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) ) |
605 |
604
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) ) ) |
606 |
605
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ ( 3 + 2 ) ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
607 |
598 606
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
608 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
609 |
608
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
610 |
3 609
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ 5 ) ∈ ℂ ) |
611 |
355 610
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( 3 ↑ 5 ) ) = ( ( 3 ↑ 5 ) · 2 ) ) |
612 |
611
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) = ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) |
613 |
612
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) = ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) |
614 |
613
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) ) |
615 |
614
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( 2 · ( 3 ↑ 5 ) ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
616 |
607 615
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
617 |
3 610 355
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) = ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) |
618 |
617
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) = ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) |
619 |
618
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) ) |
620 |
619
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( 3 · ( ( 3 ↑ 5 ) · 2 ) ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
621 |
616 620
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
622 |
3 610
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ 5 ) ) ∈ ℂ ) |
623 |
3 622 355
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) = ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) ) |
624 |
623
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) ) ) |
625 |
624
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 · ( ( 3 · ( 3 ↑ 5 ) ) · 2 ) ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
626 |
621 625
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
627 |
3 610
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ 5 ) ) = ( ( 3 ↑ 5 ) · 3 ) ) |
628 |
627
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) = ( 3 · ( ( 3 ↑ 5 ) · 3 ) ) ) |
629 |
3 609
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( 5 + 1 ) ) = ( ( 3 ↑ 5 ) · 3 ) ) |
630 |
629
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 5 + 1 ) ) ) = ( 3 · ( ( 3 ↑ 5 ) · 3 ) ) ) |
631 |
628 630
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) = ( 3 · ( 3 ↑ ( 5 + 1 ) ) ) ) |
632 |
609 458
|
nn0addcld |
⊢ ( 𝜑 → ( 5 + 1 ) ∈ ℕ0 ) |
633 |
3 632
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( 5 + 1 ) ) ∈ ℂ ) |
634 |
3 633
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 5 + 1 ) ) ) = ( ( 3 ↑ ( 5 + 1 ) ) · 3 ) ) |
635 |
631 634
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) = ( ( 3 ↑ ( 5 + 1 ) ) · 3 ) ) |
636 |
3 632
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) = ( ( 3 ↑ ( 5 + 1 ) ) · 3 ) ) |
637 |
635 636
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) = ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) ) |
638 |
637
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) = ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) ) |
639 |
638
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) ) ) |
640 |
639
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · ( 3 ↑ 5 ) ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
641 |
626 640
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
642 |
375
|
oveq1d |
⊢ ( 𝜑 → ( ( 5 + 1 ) + 1 ) = ( 6 + 1 ) ) |
643 |
642
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) = ( 3 ↑ ( 6 + 1 ) ) ) |
644 |
643
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) = ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) ) |
645 |
644
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) ) ) |
646 |
645
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( ( 5 + 1 ) + 1 ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
647 |
641 646
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
648 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
649 |
648
|
a1i |
⊢ ( 𝜑 → ( 6 + 1 ) = 7 ) |
650 |
649
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 6 + 1 ) ) = ( 3 ↑ 7 ) ) |
651 |
650
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) = ( ( 3 ↑ 7 ) · 2 ) ) |
652 |
651
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) ) |
653 |
652
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ ( 6 + 1 ) ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
654 |
647 653
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) ) |
655 |
11 8 5
|
mulexpd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) = ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) |
656 |
655
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) = ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) ) |
657 |
656
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) ) ) |
658 |
654 657
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) ) ) |
659 |
11 5
|
expcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) ↑ 3 ) ∈ ℂ ) |
660 |
659 438
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ∈ ℂ ) |
661 |
8 660
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) = ( ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) · 𝐴 ) ) |
662 |
659 438
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) = ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) |
663 |
662
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) · 𝐴 ) ) |
664 |
661 663
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) · 𝐴 ) ) |
665 |
438 659 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) · 𝐴 ) = ( ( 𝐴 ↑ 3 ) · ( ( ( 3 ↑ 2 ) ↑ 3 ) · 𝐴 ) ) ) |
666 |
664 665
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( ( ( 3 ↑ 2 ) ↑ 3 ) · 𝐴 ) ) ) |
667 |
659 8
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 3 ) · 𝐴 ) = ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) |
668 |
667
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · ( ( ( 3 ↑ 2 ) ↑ 3 ) · 𝐴 ) ) = ( ( 𝐴 ↑ 3 ) · ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
669 |
666 668
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 3 ) · ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
670 |
669
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) ↑ 3 ) · ( 𝐴 ↑ 3 ) ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 3 ) · ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) ) |
671 |
658 670
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 3 ) · ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) ) |
672 |
438 8 659
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) = ( ( 𝐴 ↑ 3 ) · ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
673 |
672
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 3 ) · ( 𝐴 · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) ) |
674 |
671 673
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
675 |
8 5
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 3 + 1 ) ) = ( ( 𝐴 ↑ 3 ) · 𝐴 ) ) |
676 |
675
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 3 ) · 𝐴 ) = ( 𝐴 ↑ ( 3 + 1 ) ) ) |
677 |
676
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) = ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) |
678 |
677
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( ( 𝐴 ↑ 3 ) · 𝐴 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
679 |
674 678
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
680 |
587
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) |
681 |
680
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ ( 3 + 1 ) ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
682 |
679 681
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) ) |
683 |
3 5 29
|
expmuld |
⊢ ( 𝜑 → ( 3 ↑ ( 2 · 3 ) ) = ( ( 3 ↑ 2 ) ↑ 3 ) ) |
684 |
683
|
eqcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) ↑ 3 ) = ( 3 ↑ ( 2 · 3 ) ) ) |
685 |
684
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 ↑ ( 2 · 3 ) ) ) ) |
686 |
685
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 2 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ ( 2 · 3 ) ) ) ) ) |
687 |
682 686
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ ( 2 · 3 ) ) ) ) ) |
688 |
|
2cn |
⊢ 2 ∈ ℂ |
689 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
690 |
2 688 689
|
mulcomli |
⊢ ( 2 · 3 ) = 6 |
691 |
690
|
a1i |
⊢ ( 𝜑 → ( 2 · 3 ) = 6 ) |
692 |
691
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 2 · 3 ) ) = ( 3 ↑ 6 ) ) |
693 |
692
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( 3 ↑ ( 2 · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ) |
694 |
693
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ ( 2 · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ) ) |
695 |
687 694
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ) ) |
696 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
697 |
696
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℕ0 ) |
698 |
8 697
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
699 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
700 |
699
|
a1i |
⊢ ( 𝜑 → 7 ∈ ℕ0 ) |
701 |
3 700
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ 7 ) ∈ ℂ ) |
702 |
701 355
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 7 ) · 2 ) ∈ ℂ ) |
703 |
698 702 441
|
adddid |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ) ) |
704 |
703
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 7 ) · 2 ) ) + ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) ) |
705 |
695 704
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) ) |
706 |
705
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) |
707 |
706
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
708 |
707
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
709 |
708
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 · ( ( ( 3 · 2 ) · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 3 ) ) + ( 𝐴 · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 3 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
710 |
487 709
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
711 |
380
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) = ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
712 |
711
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) = ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) |
713 |
712
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) ) |
714 |
713
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
715 |
10 387
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
716 |
3 715
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
717 |
8 716
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) · 𝐴 ) ) |
718 |
3 715
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) = ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) ) |
719 |
718
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) · 𝐴 ) = ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) · 𝐴 ) ) |
720 |
717 719
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) · 𝐴 ) ) |
721 |
286
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
722 |
721
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) ) |
723 |
722
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) · 𝐴 ) ) |
724 |
720 723
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) · 𝐴 ) ) |
725 |
291 387
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
726 |
725 3 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · 3 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · ( 3 · 𝐴 ) ) ) |
727 |
724 726
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · ( 3 · 𝐴 ) ) ) |
728 |
291 387 295
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) · ( 3 · 𝐴 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) ) |
729 |
727 728
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) ) |
730 |
387 295
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ∈ ℂ ) |
731 |
9 6 730
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 3 ) ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) ) ) |
732 |
729 731
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) ) ) |
733 |
6 730
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) = ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) |
734 |
733
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 3 ) · ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
735 |
732 734
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
736 |
394
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) |
737 |
736
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) |
738 |
737
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
739 |
735 738
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) ) |
740 |
399 295 6
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) |
741 |
740
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) ) |
742 |
739 741
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) ) |
743 |
295 6
|
mulcld |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ∈ ℂ ) |
744 |
9 386 743
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) ) |
745 |
744
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 ↑ 2 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) ) ) |
746 |
742 745
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) ) ) |
747 |
386 743
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) = ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
748 |
747
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
749 |
748
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
750 |
746 749
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
751 |
308
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) = ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) ) |
752 |
751
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) = ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
753 |
752
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
754 |
753
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 3 · 𝐴 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
755 |
750 754
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
756 |
313 6 386
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) = ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
757 |
756
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
758 |
757
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( ( 𝐴 · 3 ) · ( 3 ↑ 3 ) ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
759 |
755 758
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
760 |
6 386
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ∈ ℂ ) |
761 |
8 3 760
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
762 |
761
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
763 |
762
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) ) |
764 |
759 763
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) ) |
765 |
764
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
766 |
714 765
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
767 |
3 760
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ∈ ℂ ) |
768 |
8 767
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ∈ ℂ ) |
769 |
9 9 768
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) = ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) ) |
770 |
769
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( ( 𝐴 ↑ 2 ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
771 |
766 770
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
772 |
9 9
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
773 |
772 8 767
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) ) |
774 |
773
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · ( 𝐴 · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
775 |
771 774
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
776 |
8 29 29
|
expaddd |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 + 2 ) ) = ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
777 |
776
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 2 + 2 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) ) |
778 |
777
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) = ( ( 𝐴 ↑ ( 2 + 2 ) ) · 𝐴 ) ) |
779 |
8 259
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 + 2 ) ) · 𝐴 ) ) |
780 |
778 779
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) = ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) ) |
781 |
780
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
782 |
781
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) · 𝐴 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
783 |
775 782
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
784 |
266
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) = ( 𝐴 ↑ ( 4 + 1 ) ) ) |
785 |
784
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
786 |
785
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ( 2 + 2 ) + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
787 |
783 786
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
788 |
271
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 4 + 1 ) ) = ( 𝐴 ↑ 5 ) ) |
789 |
788
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) ) |
790 |
789
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
791 |
787 790
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
792 |
445
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( 3 ↑ ( 2 · 2 ) ) ) = ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) |
793 |
792
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 3 ) · ( 3 ↑ ( 2 · 2 ) ) ) ) = ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) |
794 |
793
|
eqcomd |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 · ( ( 3 ↑ 3 ) · ( 3 ↑ ( 2 · 2 ) ) ) ) ) |
795 |
3 449 5
|
expaddd |
⊢ ( 𝜑 → ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) = ( ( 3 ↑ 3 ) · ( 3 ↑ ( 2 · 2 ) ) ) ) |
796 |
795
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) ) = ( 3 · ( ( 3 ↑ 3 ) · ( 3 ↑ ( 2 · 2 ) ) ) ) ) |
797 |
794 796
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 · ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) ) ) |
798 |
5 449
|
nn0addcld |
⊢ ( 𝜑 → ( 3 + ( 2 · 2 ) ) ∈ ℕ0 ) |
799 |
3 798
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) ∈ ℂ ) |
800 |
3 799
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) ) = ( ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) · 3 ) ) |
801 |
797 800
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) · 3 ) ) |
802 |
3 798
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) = ( ( 3 ↑ ( 3 + ( 2 · 2 ) ) ) · 3 ) ) |
803 |
801 802
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) = ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) ) |
804 |
803
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) ) ) |
805 |
804
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 · ( ( 3 ↑ 3 ) · ( ( 3 ↑ 2 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
806 |
791 805
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
807 |
469
|
oveq2d |
⊢ ( 𝜑 → ( 3 + ( 2 · 2 ) ) = ( 3 + 4 ) ) |
808 |
807
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 + ( 2 · 2 ) ) + 1 ) = ( ( 3 + 4 ) + 1 ) ) |
809 |
808
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) = ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) |
810 |
809
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) ) |
811 |
810
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 2 · 2 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
812 |
806 811
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
813 |
586
|
oveq2d |
⊢ ( 𝜑 → ( 3 + ( 3 + 1 ) ) = ( 3 + 4 ) ) |
814 |
813
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 + ( 3 + 1 ) ) + 1 ) = ( ( 3 + 4 ) + 1 ) ) |
815 |
814
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) = ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) |
816 |
815
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) ) |
817 |
816
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + 4 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
818 |
812 817
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
819 |
3 3 357
|
addassd |
⊢ ( 𝜑 → ( ( 3 + 3 ) + 1 ) = ( 3 + ( 3 + 1 ) ) ) |
820 |
819
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 + 3 ) + 1 ) + 1 ) = ( ( 3 + ( 3 + 1 ) ) + 1 ) ) |
821 |
820
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) = ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) ) |
822 |
821
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) ) ) |
823 |
822
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 3 + ( 3 + 1 ) ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
824 |
818 823
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
825 |
|
3p3e6 |
⊢ ( 3 + 3 ) = 6 |
826 |
825
|
a1i |
⊢ ( 𝜑 → ( 3 + 3 ) = 6 ) |
827 |
826
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 + 3 ) + 1 ) = ( 6 + 1 ) ) |
828 |
827
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 + 3 ) + 1 ) + 1 ) = ( ( 6 + 1 ) + 1 ) ) |
829 |
828
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) = ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) |
830 |
829
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) ) |
831 |
830
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( ( 3 + 3 ) + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
832 |
824 831
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
833 |
649
|
oveq1d |
⊢ ( 𝜑 → ( ( 6 + 1 ) + 1 ) = ( 7 + 1 ) ) |
834 |
833
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) = ( 3 ↑ ( 7 + 1 ) ) ) |
835 |
834
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) ) |
836 |
835
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
837 |
832 836
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
838 |
|
7p1e8 |
⊢ ( 7 + 1 ) = 8 |
839 |
838
|
a1i |
⊢ ( 𝜑 → ( 7 + 1 ) = 8 ) |
840 |
839
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 7 + 1 ) ) = ( 3 ↑ 8 ) ) |
841 |
840
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) ) |
842 |
841
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
843 |
837 842
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) ) |
844 |
6 9 29
|
mulexpd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) = ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) ) |
845 |
844
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) = ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) |
846 |
845
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) = ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) |
847 |
846
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) |
848 |
847
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) ) |
849 |
843 848
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) ) |
850 |
3 29 5
|
expmuld |
⊢ ( 𝜑 → ( 3 ↑ ( 3 · 2 ) ) = ( ( 3 ↑ 3 ) ↑ 2 ) ) |
851 |
850
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) = ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) ) |
852 |
851
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) = ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) |
853 |
852
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) = ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) |
854 |
853
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) |
855 |
854
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) |
856 |
8 29 29
|
expmuld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 · 2 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) |
857 |
856
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) = ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) ) |
858 |
857
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) = ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) |
859 |
858
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) = ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) |
860 |
859
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) |
861 |
855 860
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) |
862 |
861
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) ) |
863 |
849 862
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) ) |
864 |
689
|
a1i |
⊢ ( 𝜑 → ( 3 · 2 ) = 6 ) |
865 |
864
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 3 · 2 ) ) = ( 3 ↑ 6 ) ) |
866 |
865
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) = ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) ) |
867 |
866
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) = ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) |
868 |
867
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) = ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) |
869 |
868
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) |
870 |
869
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ ( 3 · 2 ) ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) ) |
871 |
863 870
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) ) |
872 |
469
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 · 2 ) ) = ( 𝐴 ↑ 4 ) ) |
873 |
872
|
oveq2d |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) = ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) ) |
874 |
873
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) = ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) |
875 |
874
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) = ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) |
876 |
875
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) ) |
877 |
876
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ ( 2 · 2 ) ) ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) ) ) |
878 |
871 877
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) ) ) |
879 |
441 698
|
mulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) ∈ ℂ ) |
880 |
879 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ∈ ℂ ) |
881 |
3 880
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ∈ ℂ ) |
882 |
8 881
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) · 𝐴 ) ) |
883 |
3 880
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) = ( ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) · 3 ) ) |
884 |
883
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) · 𝐴 ) = ( ( ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
885 |
882 884
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
886 |
441 698
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) = ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ) |
887 |
886
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) ) |
888 |
887
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) · 3 ) = ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · 3 ) ) |
889 |
888
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) · 3 ) · 𝐴 ) = ( ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
890 |
885 889
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · 3 ) · 𝐴 ) ) |
891 |
698 441
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) ∈ ℂ ) |
892 |
891 3
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) ∈ ℂ ) |
893 |
892 3 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · 3 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · ( 3 · 𝐴 ) ) ) |
894 |
890 893
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · ( 3 · 𝐴 ) ) ) |
895 |
891 3 295
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · 3 ) · ( 3 · 𝐴 ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · ( 3 · ( 3 · 𝐴 ) ) ) ) |
896 |
894 895
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · ( 3 · ( 3 · 𝐴 ) ) ) ) |
897 |
698 441 405
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · ( 3 ↑ 6 ) ) · ( 3 · ( 3 · 𝐴 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 6 ) · ( 3 · ( 3 · 𝐴 ) ) ) ) ) |
898 |
896 897
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 6 ) · ( 3 · ( 3 · 𝐴 ) ) ) ) ) |
899 |
441 405
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 6 ) · ( 3 · ( 3 · 𝐴 ) ) ) = ( ( 3 · ( 3 · 𝐴 ) ) · ( 3 ↑ 6 ) ) ) |
900 |
899
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 ↑ 6 ) · ( 3 · ( 3 · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · 𝐴 ) ) · ( 3 ↑ 6 ) ) ) ) |
901 |
898 900
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · 𝐴 ) ) · ( 3 ↑ 6 ) ) ) ) |
902 |
411
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( 3 · 𝐴 ) ) · ( 3 ↑ 6 ) ) = ( ( ( 3 · 𝐴 ) · 3 ) · ( 3 ↑ 6 ) ) ) |
903 |
902
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 3 · ( 3 · 𝐴 ) ) · ( 3 ↑ 6 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( ( 3 · 𝐴 ) · 3 ) · ( 3 ↑ 6 ) ) ) ) |
904 |
901 903
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( ( 3 · 𝐴 ) · 3 ) · ( 3 ↑ 6 ) ) ) ) |
905 |
415
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) · 3 ) · ( 3 ↑ 6 ) ) = ( ( ( 𝐴 · 3 ) · 3 ) · ( 3 ↑ 6 ) ) ) |
906 |
905
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( ( 3 · 𝐴 ) · 3 ) · ( 3 ↑ 6 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( ( 𝐴 · 3 ) · 3 ) · ( 3 ↑ 6 ) ) ) ) |
907 |
904 906
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( ( 𝐴 · 3 ) · 3 ) · ( 3 ↑ 6 ) ) ) ) |
908 |
313 3 441
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 3 ) · 3 ) · ( 3 ↑ 6 ) ) = ( ( 𝐴 · 3 ) · ( 3 · ( 3 ↑ 6 ) ) ) ) |
909 |
908
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( ( 𝐴 · 3 ) · 3 ) · ( 3 ↑ 6 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 𝐴 · 3 ) · ( 3 · ( 3 ↑ 6 ) ) ) ) ) |
910 |
907 909
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 𝐴 · 3 ) · ( 3 · ( 3 ↑ 6 ) ) ) ) ) |
911 |
3 441
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ 6 ) ) ∈ ℂ ) |
912 |
8 3 911
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( 3 · ( 3 ↑ 6 ) ) ) = ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) |
913 |
912
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · ( ( 𝐴 · 3 ) · ( 3 · ( 3 ↑ 6 ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
914 |
910 913
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
915 |
914
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( 𝐴 · ( 3 · ( ( ( 3 ↑ 6 ) · ( 𝐴 ↑ 4 ) ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 4 ) · ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) ) |
916 |
878 915
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 4 ) · ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) ) |
917 |
3 911
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ∈ ℂ ) |
918 |
698 8 917
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · 𝐴 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) = ( ( 𝐴 ↑ 4 ) · ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
919 |
918
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( ( 𝐴 ↑ 4 ) · 𝐴 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 4 ) · ( 𝐴 · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) ) |
920 |
916 919
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( ( 𝐴 ↑ 4 ) · 𝐴 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
921 |
8 697
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 4 + 1 ) ) = ( ( 𝐴 ↑ 4 ) · 𝐴 ) ) |
922 |
921
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) · 𝐴 ) = ( 𝐴 ↑ ( 4 + 1 ) ) ) |
923 |
922
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) · 𝐴 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) = ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) |
924 |
923
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( ( 𝐴 ↑ 4 ) · 𝐴 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
925 |
920 924
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
926 |
788
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) |
927 |
926
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ ( 4 + 1 ) ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
928 |
925 927
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) ) |
929 |
3 441
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ 6 ) ) = ( ( 3 ↑ 6 ) · 3 ) ) |
930 |
929
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) = ( 3 · ( ( 3 ↑ 6 ) · 3 ) ) ) |
931 |
3 440
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( 6 + 1 ) ) = ( ( 3 ↑ 6 ) · 3 ) ) |
932 |
931
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 6 + 1 ) ) ) = ( 3 · ( ( 3 ↑ 6 ) · 3 ) ) ) |
933 |
930 932
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) = ( 3 · ( 3 ↑ ( 6 + 1 ) ) ) ) |
934 |
440 458
|
nn0addcld |
⊢ ( 𝜑 → ( 6 + 1 ) ∈ ℕ0 ) |
935 |
3 934
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( 6 + 1 ) ) ∈ ℂ ) |
936 |
3 935
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( 6 + 1 ) ) ) = ( ( 3 ↑ ( 6 + 1 ) ) · 3 ) ) |
937 |
933 936
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) = ( ( 3 ↑ ( 6 + 1 ) ) · 3 ) ) |
938 |
3 934
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) = ( ( 3 ↑ ( 6 + 1 ) ) · 3 ) ) |
939 |
937 938
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) = ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) |
940 |
939
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) = ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) ) |
941 |
940
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 · ( 3 · ( 3 ↑ 6 ) ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) ) ) |
942 |
928 941
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) ) ) |
943 |
835
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( ( 6 + 1 ) + 1 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) ) ) |
944 |
942 943
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) ) ) |
945 |
841
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ ( 7 + 1 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) ) ) |
946 |
944 945
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) ) ) |
947 |
8 609
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 5 ) ∈ ℂ ) |
948 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
949 |
948
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℕ0 ) |
950 |
3 949
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ 8 ) ∈ ℂ ) |
951 |
947 950 950
|
adddid |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) ) ) |
952 |
951
|
eqcomd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) + ( ( 𝐴 ↑ 5 ) · ( 3 ↑ 8 ) ) ) = ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) ) |
953 |
946 952
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) = ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) ) |
954 |
953
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) = ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) |
955 |
954
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
956 |
955
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) ↑ 2 ) ) ) ) + ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · 3 ) ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
957 |
710 956
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
958 |
844
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) = ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) |
959 |
958
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) = ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) |
960 |
959
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) ) |
961 |
6
|
sqcld |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) ↑ 2 ) ∈ ℂ ) |
962 |
9
|
sqcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) ↑ 2 ) ∈ ℂ ) |
963 |
961 962
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) ∈ ℂ ) |
964 |
963 12
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ∈ ℂ ) |
965 |
3 964
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ∈ ℂ ) |
966 |
8 965
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 𝐴 ) ) |
967 |
3 964
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) = ( ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) ) |
968 |
967
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) · 𝐴 ) = ( ( ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) · 𝐴 ) ) |
969 |
966 968
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) · 𝐴 ) ) |
970 |
961 962
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) |
971 |
970
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) = ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) |
972 |
971
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) = ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) ) |
973 |
972
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) · 𝐴 ) ) |
974 |
969 973
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) · 𝐴 ) ) |
975 |
962 961
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ∈ ℂ ) |
976 |
975 12
|
mulcld |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ∈ ℂ ) |
977 |
976 3 8
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · 3 ) · 𝐴 ) = ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 𝐴 ) ) ) |
978 |
974 977
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 𝐴 ) ) ) |
979 |
975 12 295
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) · ( 3 · 𝐴 ) ) = ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) ) |
980 |
978 979
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) ) |
981 |
12 295
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ∈ ℂ ) |
982 |
962 961 981
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) ) ) |
983 |
980 982
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) ) ) |
984 |
961 981
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) = ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) |
985 |
984
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) |
986 |
983 985
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) |
987 |
232
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) = ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) ) |
988 |
987
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) = ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) |
989 |
988
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( ( 3 ↑ 2 ) · 𝐴 ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) |
990 |
986 989
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) |
991 |
237 295 961
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) = ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) |
992 |
991
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( 3 · 𝐴 ) ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) ) |
993 |
990 992
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) ) |
994 |
295 961
|
mulcld |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ∈ ℂ ) |
995 |
8 11 994
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) = ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) ) |
996 |
995
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( ( 𝐴 · ( 3 ↑ 2 ) ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) ) ) |
997 |
993 996
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) ) ) |
998 |
11 994
|
mulcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) = ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) |
999 |
998
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) = ( 𝐴 · ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) |
1000 |
999
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( 3 ↑ 2 ) · ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
1001 |
997 1000
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
1002 |
308
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) = ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) ) |
1003 |
1002
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) = ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) |
1004 |
1003
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) = ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) |
1005 |
1004
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( ( 3 · 𝐴 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
1006 |
1001 1005
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) ) |
1007 |
313 961 11
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) = ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) |
1008 |
1007
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) = ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1009 |
1008
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( ( 𝐴 · 3 ) · ( ( 3 ↑ 3 ) ↑ 2 ) ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
1010 |
1006 1009
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
1011 |
961 11
|
mulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ∈ ℂ ) |
1012 |
8 3 1011
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) = ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1013 |
1012
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( 𝐴 · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
1014 |
1013
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( ( 𝐴 · 3 ) · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
1015 |
1010 1014
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
1016 |
960 1015
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
1017 |
3 1011
|
mulcld |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ∈ ℂ ) |
1018 |
8 1017
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ∈ ℂ ) |
1019 |
962 8 1018
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · ( 𝐴 · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) ) |
1020 |
1016 1019
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
1021 |
962 8
|
mulcld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) ∈ ℂ ) |
1022 |
1021 8 1017
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · ( 𝐴 · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) ) |
1023 |
1020 1022
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1024 |
856
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 2 · 2 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) ) |
1025 |
1024
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( 2 · 2 ) ) · 𝐴 ) · 𝐴 ) = ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) ) |
1026 |
1025
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) = ( ( ( 𝐴 ↑ ( 2 · 2 ) ) · 𝐴 ) · 𝐴 ) ) |
1027 |
8 449
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 · 2 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 · 2 ) ) · 𝐴 ) ) |
1028 |
1027
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ( 2 · 2 ) + 1 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ ( 2 · 2 ) ) · 𝐴 ) · 𝐴 ) ) |
1029 |
1026 1028
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ ( ( 2 · 2 ) + 1 ) ) · 𝐴 ) ) |
1030 |
8 459
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) = ( ( 𝐴 ↑ ( ( 2 · 2 ) + 1 ) ) · 𝐴 ) ) |
1031 |
1029 1030
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) = ( 𝐴 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) ) |
1032 |
1031
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) · 𝐴 ) · 𝐴 ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1033 |
1023 1032
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1034 |
471
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) = ( 𝐴 ↑ ( ( 4 + 1 ) + 1 ) ) ) |
1035 |
1034
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ( ( 2 · 2 ) + 1 ) + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ ( ( 4 + 1 ) + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1036 |
1033 1035
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ ( ( 4 + 1 ) + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1037 |
369
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 4 + 1 ) + 1 ) ) = ( 𝐴 ↑ ( 5 + 1 ) ) ) |
1038 |
1037
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ( 4 + 1 ) + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ ( 5 + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1039 |
1036 1038
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ ( 5 + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1040 |
375
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 5 + 1 ) ) = ( 𝐴 ↑ 6 ) ) |
1041 |
1040
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 5 + 1 ) ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1042 |
1039 1041
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) ) |
1043 |
850
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ ( 3 · 2 ) ) · ( 3 ↑ 2 ) ) = ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) |
1044 |
1043
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 3 ↑ ( 3 · 2 ) ) · ( 3 ↑ 2 ) ) ) = ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) |
1045 |
1044
|
eqcomd |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) = ( 3 · ( ( 3 ↑ ( 3 · 2 ) ) · ( 3 ↑ 2 ) ) ) ) |
1046 |
3 29 30
|
expaddd |
⊢ ( 𝜑 → ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) = ( ( 3 ↑ ( 3 · 2 ) ) · ( 3 ↑ 2 ) ) ) |
1047 |
1046
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) ) = ( 3 · ( ( 3 ↑ ( 3 · 2 ) ) · ( 3 ↑ 2 ) ) ) ) |
1048 |
1045 1047
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) = ( 3 · ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) ) ) |
1049 |
30 29
|
nn0addcld |
⊢ ( 𝜑 → ( ( 3 · 2 ) + 2 ) ∈ ℕ0 ) |
1050 |
3 1049
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) ∈ ℂ ) |
1051 |
3 1050
|
mulcomd |
⊢ ( 𝜑 → ( 3 · ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) ) = ( ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) · 3 ) ) |
1052 |
1048 1051
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) = ( ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) · 3 ) ) |
1053 |
3 1049
|
expp1d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 3 · 2 ) + 2 ) + 1 ) ) = ( ( 3 ↑ ( ( 3 · 2 ) + 2 ) ) · 3 ) ) |
1054 |
1052 1053
|
eqtr4d |
⊢ ( 𝜑 → ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) = ( 3 ↑ ( ( ( 3 · 2 ) + 2 ) + 1 ) ) ) |
1055 |
1054
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 6 ) · ( 3 · ( ( ( 3 ↑ 3 ) ↑ 2 ) · ( 3 ↑ 2 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( ( ( 3 · 2 ) + 2 ) + 1 ) ) ) ) |
1056 |
1042 1055
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( ( ( 3 · 2 ) + 2 ) + 1 ) ) ) ) |
1057 |
864
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · 2 ) + 2 ) = ( 6 + 2 ) ) |
1058 |
1057
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 3 · 2 ) + 2 ) + 1 ) = ( ( 6 + 2 ) + 1 ) ) |
1059 |
1058
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( ( 3 · 2 ) + 2 ) + 1 ) ) = ( 3 ↑ ( ( 6 + 2 ) + 1 ) ) ) |
1060 |
1059
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( ( ( 3 · 2 ) + 2 ) + 1 ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( ( 6 + 2 ) + 1 ) ) ) ) |
1061 |
1056 1060
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( ( 6 + 2 ) + 1 ) ) ) ) |
1062 |
|
6p2e8 |
⊢ ( 6 + 2 ) = 8 |
1063 |
1062
|
a1i |
⊢ ( 𝜑 → ( 6 + 2 ) = 8 ) |
1064 |
1063
|
oveq1d |
⊢ ( 𝜑 → ( ( 6 + 2 ) + 1 ) = ( 8 + 1 ) ) |
1065 |
1064
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ( 6 + 2 ) + 1 ) ) = ( 3 ↑ ( 8 + 1 ) ) ) |
1066 |
1065
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( ( 6 + 2 ) + 1 ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( 8 + 1 ) ) ) ) |
1067 |
1061 1066
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( 8 + 1 ) ) ) ) |
1068 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
1069 |
1068
|
a1i |
⊢ ( 𝜑 → ( 8 + 1 ) = 9 ) |
1070 |
1069
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 8 + 1 ) ) = ( 3 ↑ 9 ) ) |
1071 |
1070
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 6 ) · ( 3 ↑ ( 8 + 1 ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) ) |
1072 |
1067 1071
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) = ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) ) |
1073 |
1072
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) = ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) |
1074 |
1073
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( 𝐴 · ( 3 · ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 2 ) · ( ( 3 ↑ 2 ) · 𝐴 ) ) ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1075 |
957 1074
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1076 |
6 9 5
|
mulexpd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) = ( ( ( 3 ↑ 3 ) ↑ 3 ) · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) ) |
1077 |
1076
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) = ( 𝐴 · ( ( ( 3 ↑ 3 ) ↑ 3 ) · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) ) ) |
1078 |
6 5
|
expcld |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) ↑ 3 ) ∈ ℂ ) |
1079 |
9 5
|
expcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) ↑ 3 ) ∈ ℂ ) |
1080 |
1078 1079
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 3 ↑ 3 ) ↑ 3 ) · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 3 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1081 |
1080
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) ↑ 3 ) · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) ) = ( 𝐴 · ( ( ( 𝐴 ↑ 2 ) ↑ 3 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) ) |
1082 |
1077 1081
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) = ( 𝐴 · ( ( ( 𝐴 ↑ 2 ) ↑ 3 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) ) |
1083 |
8 1079 1078
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) = ( 𝐴 · ( ( ( 𝐴 ↑ 2 ) ↑ 3 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) ) |
1084 |
1082 1083
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) = ( ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1085 |
8 5 29
|
expmuld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 · 3 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) |
1086 |
1085
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐴 ↑ ( 2 · 3 ) ) ) = ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) ) |
1087 |
1086
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) = ( 𝐴 · ( 𝐴 ↑ ( 2 · 3 ) ) ) ) |
1088 |
29 5
|
nn0mulcld |
⊢ ( 𝜑 → ( 2 · 3 ) ∈ ℕ0 ) |
1089 |
8 1088
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 2 · 3 ) ) ∈ ℂ ) |
1090 |
8 1089
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐴 ↑ ( 2 · 3 ) ) ) = ( ( 𝐴 ↑ ( 2 · 3 ) ) · 𝐴 ) ) |
1091 |
1087 1090
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) = ( ( 𝐴 ↑ ( 2 · 3 ) ) · 𝐴 ) ) |
1092 |
8 1088
|
expp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 · 3 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 · 3 ) ) · 𝐴 ) ) |
1093 |
1091 1092
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) = ( 𝐴 ↑ ( ( 2 · 3 ) + 1 ) ) ) |
1094 |
1093
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( 𝐴 ↑ 2 ) ↑ 3 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) = ( ( 𝐴 ↑ ( ( 2 · 3 ) + 1 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1095 |
1084 1094
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) = ( ( 𝐴 ↑ ( ( 2 · 3 ) + 1 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1096 |
691
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 3 ) + 1 ) = ( 6 + 1 ) ) |
1097 |
1096
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ( 2 · 3 ) + 1 ) ) = ( 𝐴 ↑ ( 6 + 1 ) ) ) |
1098 |
1097
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ( 2 · 3 ) + 1 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) = ( ( 𝐴 ↑ ( 6 + 1 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1099 |
1095 1098
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) = ( ( 𝐴 ↑ ( 6 + 1 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1100 |
649
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ↑ ( 6 + 1 ) ) = ( 𝐴 ↑ 7 ) ) |
1101 |
1100
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( 6 + 1 ) ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) = ( ( 𝐴 ↑ 7 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1102 |
1099 1101
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) = ( ( 𝐴 ↑ 7 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) ) |
1103 |
1102
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) ↑ 3 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( ( 𝐴 ↑ 7 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1104 |
1075 1103
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( ( 𝐴 ↑ 7 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1105 |
3 5 5
|
expmuld |
⊢ ( 𝜑 → ( 3 ↑ ( 3 · 3 ) ) = ( ( 3 ↑ 3 ) ↑ 3 ) ) |
1106 |
1105
|
eqcomd |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) ↑ 3 ) = ( 3 ↑ ( 3 · 3 ) ) ) |
1107 |
1106
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 7 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) = ( ( 𝐴 ↑ 7 ) · ( 3 ↑ ( 3 · 3 ) ) ) ) |
1108 |
1107
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 7 ) · ( ( 3 ↑ 3 ) ↑ 3 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( ( 𝐴 ↑ 7 ) · ( 3 ↑ ( 3 · 3 ) ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1109 |
1104 1108
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( ( 𝐴 ↑ 7 ) · ( 3 ↑ ( 3 · 3 ) ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1110 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
1111 |
1110
|
a1i |
⊢ ( 𝜑 → ( 3 · 3 ) = 9 ) |
1112 |
1111
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( 3 · 3 ) ) = ( 3 ↑ 9 ) ) |
1113 |
1112
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 7 ) · ( 3 ↑ ( 3 · 3 ) ) ) = ( ( 𝐴 ↑ 7 ) · ( 3 ↑ 9 ) ) ) |
1114 |
1113
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 7 ) · ( 3 ↑ ( 3 · 3 ) ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) = ( ( ( 𝐴 ↑ 7 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |
1115 |
1109 1114
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( ( ( 3 ↑ 3 ) · ( 𝐴 ↑ 2 ) ) + ( ( 3 ↑ 2 ) · 𝐴 ) ) + 3 ) ↑ 3 ) ) = ( ( ( 𝐴 ↑ 7 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 6 ) · ( 3 ↑ 9 ) ) + ( ( ( 𝐴 ↑ 5 ) · ( ( 3 ↑ 8 ) + ( 3 ↑ 8 ) ) ) + ( ( ( 𝐴 ↑ 4 ) · ( ( ( 3 ↑ 7 ) · 2 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 3 ) · ( ( 3 ↑ 6 ) + ( 3 ↑ 6 ) ) ) + ( ( ( 𝐴 ↑ 2 ) · ( 3 ↑ 5 ) ) + ( 𝐴 · ( 3 ↑ 3 ) ) ) ) ) ) ) ) ) |