Step |
Hyp |
Ref |
Expression |
1 |
|
3nn |
|
2 |
1
|
a1i |
|
3 |
|
3nn0 |
|
4 |
3
|
a1i |
|
5 |
2 4
|
nnexpcld |
|
6 |
5
|
pm2.18i |
|
7 |
|
nnq |
|
8 |
6 7
|
mp1i |
|
9 |
|
qexpcl |
|
10 |
3 9
|
mpan2 |
|
11 |
|
qmulcl |
|
12 |
8 10 11
|
syl2anc |
|
13 |
|
1nn |
|
14 |
|
nnq |
|
15 |
13 14
|
ax-mp |
|
16 |
|
qsubcl |
|
17 |
12 15 16
|
sylancl |
|
18 |
|
qsqcl |
|
19 |
|
qmulcl |
|
20 |
8 18 19
|
syl2anc |
|
21 |
|
nnq |
|
22 |
1 21
|
ax-mp |
|
23 |
|
qsqcl |
|
24 |
22 23
|
mp1i |
|
25 |
|
qmulcl |
|
26 |
24 25
|
mpancom |
|
27 |
|
qaddcl |
|
28 |
20 26 27
|
syl2anc |
|
29 |
|
qaddcl |
|
30 |
28 22 29
|
sylancl |
|
31 |
|
id |
|
32 |
31
|
3cubeslem2 |
|
33 |
32
|
neqned |
|
34 |
|
qdivcl |
|
35 |
17 30 33 34
|
syl3anc |
|
36 |
|
qnegcl |
|
37 |
12 36
|
syl |
|
38 |
|
qaddcl |
|
39 |
37 26 38
|
syl2anc |
|
40 |
|
qaddcl |
|
41 |
39 15 40
|
sylancl |
|
42 |
|
qdivcl |
|
43 |
41 30 33 42
|
syl3anc |
|
44 |
|
qdivcl |
|
45 |
28 30 33 44
|
syl3anc |
|
46 |
31
|
3cubeslem4 |
|
47 |
|
oveq1 |
|
48 |
47
|
oveq1d |
|
49 |
48
|
oveq1d |
|
50 |
49
|
eqeq2d |
|
51 |
|
oveq1 |
|
52 |
51
|
oveq2d |
|
53 |
52
|
oveq1d |
|
54 |
53
|
eqeq2d |
|
55 |
|
oveq1 |
|
56 |
55
|
oveq2d |
|
57 |
56
|
eqeq2d |
|
58 |
50 54 57
|
rspc3ev |
|
59 |
35 43 45 46 58
|
syl31anc |
|
60 |
|
3anass |
|
61 |
|
qexpcl |
|
62 |
3 61
|
mpan2 |
|
63 |
|
simprl |
|
64 |
|
qexpcl |
|
65 |
63 3 64
|
sylancl |
|
66 |
|
qaddcl |
|
67 |
62 65 66
|
syl2an2r |
|
68 |
|
simprr |
|
69 |
|
qexpcl |
|
70 |
68 3 69
|
sylancl |
|
71 |
|
qaddcl |
|
72 |
67 70 71
|
syl2anc |
|
73 |
|
eleq1a |
|
74 |
72 73
|
syl |
|
75 |
74
|
a1i |
|
76 |
60 75
|
syl5bi |
|
77 |
76
|
rexlimdv3d |
|
78 |
77
|
mptru |
|
79 |
59 78
|
impbii |
|