Metamath Proof Explorer


Theorem 3cubes

Description: Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Assertion 3cubes A a b c A = a 3 + b 3 + c 3

Proof

Step Hyp Ref Expression
1 3nn 3
2 1 a1i ¬ 3 3 3
3 3nn0 3 0
4 3 a1i ¬ 3 3 3 0
5 2 4 nnexpcld ¬ 3 3 3 3
6 5 pm2.18i 3 3
7 nnq 3 3 3 3
8 6 7 mp1i A 3 3
9 qexpcl A 3 0 A 3
10 3 9 mpan2 A A 3
11 qmulcl 3 3 A 3 3 3 A 3
12 8 10 11 syl2anc A 3 3 A 3
13 1nn 1
14 nnq 1 1
15 13 14 ax-mp 1
16 qsubcl 3 3 A 3 1 3 3 A 3 1
17 12 15 16 sylancl A 3 3 A 3 1
18 qsqcl A A 2
19 qmulcl 3 3 A 2 3 3 A 2
20 8 18 19 syl2anc A 3 3 A 2
21 nnq 3 3
22 1 21 ax-mp 3
23 qsqcl 3 3 2
24 22 23 mp1i A 3 2
25 qmulcl 3 2 A 3 2 A
26 24 25 mpancom A 3 2 A
27 qaddcl 3 3 A 2 3 2 A 3 3 A 2 + 3 2 A
28 20 26 27 syl2anc A 3 3 A 2 + 3 2 A
29 qaddcl 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3
30 28 22 29 sylancl A 3 3 A 2 + 3 2 A + 3
31 id A A
32 31 3cubeslem2 A ¬ 3 3 A 2 + 3 2 A + 3 = 0
33 32 neqned A 3 3 A 2 + 3 2 A + 3 0
34 qdivcl 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 3 A 2 + 3 2 A + 3 0 3 3 A 3 1 3 3 A 2 + 3 2 A + 3
35 17 30 33 34 syl3anc A 3 3 A 3 1 3 3 A 2 + 3 2 A + 3
36 qnegcl 3 3 A 3 3 3 A 3
37 12 36 syl A 3 3 A 3
38 qaddcl 3 3 A 3 3 2 A - 3 3 A 3 + 3 2 A
39 37 26 38 syl2anc A - 3 3 A 3 + 3 2 A
40 qaddcl - 3 3 A 3 + 3 2 A 1 3 3 A 3 + 3 2 A + 1
41 39 15 40 sylancl A 3 3 A 3 + 3 2 A + 1
42 qdivcl 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 3 A 2 + 3 2 A + 3 0 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3
43 41 30 33 42 syl3anc A 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3
44 qdivcl 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 3 A 2 + 3 2 A + 3 0 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3
45 28 30 33 44 syl3anc A 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3
46 31 3cubeslem4 A A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3
47 oveq1 a = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 a 3 = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3
48 47 oveq1d a = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 a 3 + b 3 = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + b 3
49 48 oveq1d a = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 a 3 + b 3 + c 3 = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + b 3 + c 3
50 49 eqeq2d a = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 A = a 3 + b 3 + c 3 A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + b 3 + c 3
51 oveq1 b = 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 b 3 = 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3
52 51 oveq2d b = 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + b 3 = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3
53 52 oveq1d b = 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + b 3 + c 3 = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + c 3
54 53 eqeq2d b = 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + b 3 + c 3 A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + c 3
55 oveq1 c = 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 c 3 = 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3
56 55 oveq2d c = 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + c 3 = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3
57 56 eqeq2d c = 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + c 3 A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3
58 50 54 57 rspc3ev 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 a b c A = a 3 + b 3 + c 3
59 35 43 45 46 58 syl31anc A a b c A = a 3 + b 3 + c 3
60 3anass a b c a b c
61 qexpcl a 3 0 a 3
62 3 61 mpan2 a a 3
63 simprl a b c b
64 qexpcl b 3 0 b 3
65 63 3 64 sylancl a b c b 3
66 qaddcl a 3 b 3 a 3 + b 3
67 62 65 66 syl2an2r a b c a 3 + b 3
68 simprr a b c c
69 qexpcl c 3 0 c 3
70 68 3 69 sylancl a b c c 3
71 qaddcl a 3 + b 3 c 3 a 3 + b 3 + c 3
72 67 70 71 syl2anc a b c a 3 + b 3 + c 3
73 eleq1a a 3 + b 3 + c 3 A = a 3 + b 3 + c 3 A
74 72 73 syl a b c A = a 3 + b 3 + c 3 A
75 74 a1i a b c A = a 3 + b 3 + c 3 A
76 60 75 syl5bi a b c A = a 3 + b 3 + c 3 A
77 76 rexlimdv3d a b c A = a 3 + b 3 + c 3 A
78 77 mptru a b c A = a 3 + b 3 + c 3 A
79 59 78 impbii A a b c A = a 3 + b 3 + c 3