Metamath Proof Explorer


Theorem rexlimdv3d

Description: An extended version of rexlimdvv to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypothesis rexlimdv3d.1 φ x A y B z C ψ χ
Assertion rexlimdv3d φ x A y B z C ψ χ

Proof

Step Hyp Ref Expression
1 rexlimdv3d.1 φ x A y B z C ψ χ
2 1 3expd φ x A y B z C ψ χ
3 2 imp4d φ x A y B z C ψ χ
4 3 expdimp φ x A y B z C ψ χ
5 4 rexlimdvv φ x A y B z C ψ χ
6 5 rexlimdva φ x A y B z C ψ χ