Metamath Proof Explorer


Theorem qdivcl

Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion qdivcl ABB0AB

Proof

Step Hyp Ref Expression
1 qcn AA
2 qcn BB
3 id B0B0
4 divrec ABB0AB=A1B
5 1 2 3 4 syl3an ABB0AB=A1B
6 qreccl BB01B
7 qmulcl A1BA1B
8 6 7 sylan2 ABB0A1B
9 8 3impb ABB0A1B
10 5 9 eqeltrd ABB0AB