Metamath Proof Explorer


Theorem lttri4d

Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
Assertion lttri4d φA<BA=BB<A

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 lttri4 ABA<BA=BB<A
4 1 2 3 syl2anc φA<BA=BB<A