| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> A e. RR ) |
| 2 |
|
simpllr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> B e. RR ) |
| 3 |
|
simpll |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) -> C e. RR ) |
| 4 |
|
simprl |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) -> 0 <_ C ) |
| 5 |
3 4
|
jca |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) -> ( C e. RR /\ 0 <_ C ) ) |
| 6 |
5
|
ad2ant2l |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( C e. RR /\ 0 <_ C ) ) |
| 7 |
|
ltle |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) ) |
| 8 |
7
|
imp |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A <_ B ) |
| 9 |
8
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> A <_ B ) |
| 10 |
9
|
ad2ant2r |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> A <_ B ) |
| 11 |
|
lemul1a |
|- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |
| 12 |
1 2 6 10 11
|
syl31anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) <_ ( B x. C ) ) |
| 13 |
|
simplrl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> C e. RR ) |
| 14 |
|
simplrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> D e. RR ) |
| 15 |
|
simpllr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> B e. RR ) |
| 16 |
|
0re |
|- 0 e. RR |
| 17 |
|
lelttr |
|- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
| 18 |
16 17
|
mp3an1 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
| 19 |
18
|
imp |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> 0 < B ) |
| 20 |
19
|
adantlr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> 0 < B ) |
| 21 |
|
ltmul2 |
|- ( ( C e. RR /\ D e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( C < D <-> ( B x. C ) < ( B x. D ) ) ) |
| 22 |
13 14 15 20 21
|
syl112anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> ( C < D <-> ( B x. C ) < ( B x. D ) ) ) |
| 23 |
22
|
biimpa |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) /\ C < D ) -> ( B x. C ) < ( B x. D ) ) |
| 24 |
23
|
anasss |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ C < D ) ) -> ( B x. C ) < ( B x. D ) ) |
| 25 |
24
|
adantrrl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( B x. C ) < ( B x. D ) ) |
| 26 |
|
remulcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 27 |
26
|
ad2ant2r |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. C ) e. RR ) |
| 28 |
|
remulcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
| 29 |
28
|
ad2ant2lr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. C ) e. RR ) |
| 30 |
|
remulcl |
|- ( ( B e. RR /\ D e. RR ) -> ( B x. D ) e. RR ) |
| 31 |
30
|
ad2ant2l |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. D ) e. RR ) |
| 32 |
|
lelttr |
|- ( ( ( A x. C ) e. RR /\ ( B x. C ) e. RR /\ ( B x. D ) e. RR ) -> ( ( ( A x. C ) <_ ( B x. C ) /\ ( B x. C ) < ( B x. D ) ) -> ( A x. C ) < ( B x. D ) ) ) |
| 33 |
27 29 31 32
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A x. C ) <_ ( B x. C ) /\ ( B x. C ) < ( B x. D ) ) -> ( A x. C ) < ( B x. D ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( ( ( A x. C ) <_ ( B x. C ) /\ ( B x. C ) < ( B x. D ) ) -> ( A x. C ) < ( B x. D ) ) ) |
| 35 |
12 25 34
|
mp2and |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |
| 36 |
35
|
an4s |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |