Metamath Proof Explorer


Theorem negexpidd

Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypotheses negexpidd.1 ( 𝜑𝐴 ∈ ℝ )
negexpidd.2 ( 𝜑𝑁 ∈ ℕ0 )
negexpidd.3 ( 𝜑 → ¬ 2 ∥ 𝑁 )
Assertion negexpidd ( 𝜑 → ( ( 𝐴𝑁 ) + ( - 𝐴𝑁 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 negexpidd.1 ( 𝜑𝐴 ∈ ℝ )
2 negexpidd.2 ( 𝜑𝑁 ∈ ℕ0 )
3 negexpidd.3 ( 𝜑 → ¬ 2 ∥ 𝑁 )
4 1 2 reexpcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ )
5 4 recnd ( 𝜑 → ( 𝐴𝑁 ) ∈ ℂ )
6 5 negidd ( 𝜑 → ( ( 𝐴𝑁 ) + - ( 𝐴𝑁 ) ) = 0 )
7 1 recnd ( 𝜑𝐴 ∈ ℂ )
8 7 mulm1d ( 𝜑 → ( - 1 · 𝐴 ) = - 𝐴 )
9 8 eqcomd ( 𝜑 → - 𝐴 = ( - 1 · 𝐴 ) )
10 9 oveq1d ( 𝜑 → ( - 𝐴𝑁 ) = ( ( - 1 · 𝐴 ) ↑ 𝑁 ) )
11 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
12 11 a1i ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ ) )
13 12 3 jctird ( 𝜑 → ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ) )
14 2 13 mpd ( 𝜑 → ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) )
15 m1expo ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 )
16 15 a1i ( 𝜑 → ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) )
17 14 16 mpd ( 𝜑 → ( - 1 ↑ 𝑁 ) = - 1 )
18 17 oveq1d ( 𝜑 → ( ( - 1 ↑ 𝑁 ) · ( 𝐴𝑁 ) ) = ( - 1 · ( 𝐴𝑁 ) ) )
19 5 mulm1d ( 𝜑 → ( - 1 · ( 𝐴𝑁 ) ) = - ( 𝐴𝑁 ) )
20 18 19 eqtr2d ( 𝜑 → - ( 𝐴𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( 𝐴𝑁 ) ) )
21 neg1cn - 1 ∈ ℂ
22 21 a1i ( 𝜑 → - 1 ∈ ℂ )
23 22 7 2 mulexpd ( 𝜑 → ( ( - 1 · 𝐴 ) ↑ 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( 𝐴𝑁 ) ) )
24 20 23 eqtr4d ( 𝜑 → - ( 𝐴𝑁 ) = ( ( - 1 · 𝐴 ) ↑ 𝑁 ) )
25 10 24 eqtr4d ( 𝜑 → ( - 𝐴𝑁 ) = - ( 𝐴𝑁 ) )
26 25 oveq2d ( 𝜑 → ( ( 𝐴𝑁 ) + ( - 𝐴𝑁 ) ) = ( ( 𝐴𝑁 ) + - ( 𝐴𝑁 ) ) )
27 26 eqeq1d ( 𝜑 → ( ( ( 𝐴𝑁 ) + ( - 𝐴𝑁 ) ) = 0 ↔ ( ( 𝐴𝑁 ) + - ( 𝐴𝑁 ) ) = 0 ) )
28 6 27 mpbird ( 𝜑 → ( ( 𝐴𝑁 ) + ( - 𝐴𝑁 ) ) = 0 )