Step |
Hyp |
Ref |
Expression |
1 |
|
negexpidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
negexpidd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
negexpidd.3 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝑁 ) |
4 |
1 2
|
reexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
6 |
5
|
negidd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + - ( 𝐴 ↑ 𝑁 ) ) = 0 ) |
7 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
8 |
7
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝐴 ) = - 𝐴 ) |
9 |
8
|
eqcomd |
⊢ ( 𝜑 → - 𝐴 = ( - 1 · 𝐴 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝜑 → ( - 𝐴 ↑ 𝑁 ) = ( ( - 1 · 𝐴 ) ↑ 𝑁 ) ) |
11 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) ) |
13 |
12 3
|
jctird |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ) ) |
14 |
2 13
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ) |
15 |
|
m1expo |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → ( - 1 ↑ 𝑁 ) = - 1 ) ) |
17 |
14 16
|
mpd |
⊢ ( 𝜑 → ( - 1 ↑ 𝑁 ) = - 1 ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( - 1 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) = ( - 1 · ( 𝐴 ↑ 𝑁 ) ) ) |
19 |
5
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · ( 𝐴 ↑ 𝑁 ) ) = - ( 𝐴 ↑ 𝑁 ) ) |
20 |
18 19
|
eqtr2d |
⊢ ( 𝜑 → - ( 𝐴 ↑ 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
21 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
22 |
21
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
23 |
22 7 2
|
mulexpd |
⊢ ( 𝜑 → ( ( - 1 · 𝐴 ) ↑ 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
24 |
20 23
|
eqtr4d |
⊢ ( 𝜑 → - ( 𝐴 ↑ 𝑁 ) = ( ( - 1 · 𝐴 ) ↑ 𝑁 ) ) |
25 |
10 24
|
eqtr4d |
⊢ ( 𝜑 → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( - 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) + - ( 𝐴 ↑ 𝑁 ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 𝑁 ) + ( - 𝐴 ↑ 𝑁 ) ) = 0 ↔ ( ( 𝐴 ↑ 𝑁 ) + - ( 𝐴 ↑ 𝑁 ) ) = 0 ) ) |
28 |
6 27
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( - 𝐴 ↑ 𝑁 ) ) = 0 ) |