Metamath Proof Explorer


Theorem negexpidd

Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024)

Ref Expression
Hypotheses negexpidd.1 φ A
negexpidd.2 φ N 0
negexpidd.3 φ ¬ 2 N
Assertion negexpidd φ A N + A N = 0

Proof

Step Hyp Ref Expression
1 negexpidd.1 φ A
2 negexpidd.2 φ N 0
3 negexpidd.3 φ ¬ 2 N
4 1 2 reexpcld φ A N
5 4 recnd φ A N
6 5 negidd φ A N + A N = 0
7 1 recnd φ A
8 7 mulm1d φ -1 A = A
9 8 eqcomd φ A = -1 A
10 9 oveq1d φ A N = -1 A N
11 nn0z N 0 N
12 11 a1i φ N 0 N
13 12 3 jctird φ N 0 N ¬ 2 N
14 2 13 mpd φ N ¬ 2 N
15 m1expo N ¬ 2 N 1 N = 1
16 15 a1i φ N ¬ 2 N 1 N = 1
17 14 16 mpd φ 1 N = 1
18 17 oveq1d φ 1 N A N = -1 A N
19 5 mulm1d φ -1 A N = A N
20 18 19 eqtr2d φ A N = 1 N A N
21 neg1cn 1
22 21 a1i φ 1
23 22 7 2 mulexpd φ -1 A N = 1 N A N
24 20 23 eqtr4d φ A N = -1 A N
25 10 24 eqtr4d φ A N = A N
26 25 oveq2d φ A N + A N = A N + A N
27 26 eqeq1d φ A N + A N = 0 A N + A N = 0
28 6 27 mpbird φ A N + A N = 0