Description: If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnel | |- ( ( A C_ B /\ -. C e. B ) -> -. C e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | |- ( ( A C_ B /\ C e. A ) -> C e. B ) |
|
| 2 | 1 | stoic1a | |- ( ( A C_ B /\ -. C e. B ) -> -. C e. A ) |