Metamath Proof Explorer


Theorem ssnel

Description: If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ssnel ( ( 𝐴𝐵 ∧ ¬ 𝐶𝐵 ) → ¬ 𝐶𝐴 )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝐴𝐵𝐶𝐴 ) → 𝐶𝐵 )
2 1 stoic1a ( ( 𝐴𝐵 ∧ ¬ 𝐶𝐵 ) → ¬ 𝐶𝐴 )