Metamath Proof Explorer


Theorem sncldre

Description: A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion sncldre ( 𝐴 ∈ ℝ → { 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )

Proof

Step Hyp Ref Expression
1 rehaus ( topGen ‘ ran (,) ) ∈ Haus
2 uniretop ℝ = ( topGen ‘ ran (,) )
3 2 sncld ( ( ( topGen ‘ ran (,) ) ∈ Haus ∧ 𝐴 ∈ ℝ ) → { 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )
4 1 3 mpan ( 𝐴 ∈ ℝ → { 𝐴 } ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) )