Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem33.1 | |- F/_ t F |
|
stoweidlem33.2 | |- F/_ t G |
||
stoweidlem33.3 | |- F/ t ph |
||
stoweidlem33.4 | |- ( ( ph /\ f e. A ) -> f : T --> RR ) |
||
stoweidlem33.5 | |- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
||
stoweidlem33.6 | |- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
||
stoweidlem33.7 | |- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
||
Assertion | stoweidlem33 | |- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem33.1 | |- F/_ t F |
|
2 | stoweidlem33.2 | |- F/_ t G |
|
3 | stoweidlem33.3 | |- F/ t ph |
|
4 | stoweidlem33.4 | |- ( ( ph /\ f e. A ) -> f : T --> RR ) |
|
5 | stoweidlem33.5 | |- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
|
6 | stoweidlem33.6 | |- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
|
7 | stoweidlem33.7 | |- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
|
8 | eqid | |- ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) = ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) |
|
9 | eqid | |- ( t e. T |-> -u 1 ) = ( t e. T |-> -u 1 ) |
|
10 | eqid | |- ( t e. T |-> ( ( ( t e. T |-> -u 1 ) ` t ) x. ( G ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> -u 1 ) ` t ) x. ( G ` t ) ) ) |
|
11 | 3 1 2 8 9 10 4 5 6 7 | stoweidlem22 | |- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) e. A ) |