Metamath Proof Explorer


Theorem stoweidlem33

Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem33.1
|- F/_ t F
stoweidlem33.2
|- F/_ t G
stoweidlem33.3
|- F/ t ph
stoweidlem33.4
|- ( ( ph /\ f e. A ) -> f : T --> RR )
stoweidlem33.5
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A )
stoweidlem33.6
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )
stoweidlem33.7
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
Assertion stoweidlem33
|- ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) e. A )

Proof

Step Hyp Ref Expression
1 stoweidlem33.1
 |-  F/_ t F
2 stoweidlem33.2
 |-  F/_ t G
3 stoweidlem33.3
 |-  F/ t ph
4 stoweidlem33.4
 |-  ( ( ph /\ f e. A ) -> f : T --> RR )
5 stoweidlem33.5
 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A )
6 stoweidlem33.6
 |-  ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A )
7 stoweidlem33.7
 |-  ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
8 eqid
 |-  ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) = ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) )
9 eqid
 |-  ( t e. T |-> -u 1 ) = ( t e. T |-> -u 1 )
10 eqid
 |-  ( t e. T |-> ( ( ( t e. T |-> -u 1 ) ` t ) x. ( G ` t ) ) ) = ( t e. T |-> ( ( ( t e. T |-> -u 1 ) ` t ) x. ( G ` t ) ) )
11 3 1 2 8 9 10 4 5 6 7 stoweidlem22
 |-  ( ( ph /\ F e. A /\ G e. A ) -> ( t e. T |-> ( ( F ` t ) - ( G ` t ) ) ) e. A )