| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem33.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem33.2 | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 3 |  | stoweidlem33.3 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 |  | stoweidlem33.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 5 |  | stoweidlem33.5 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 6 |  | stoweidlem33.6 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 7 |  | stoweidlem33.7 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  - 1 )  =  ( 𝑡  ∈  𝑇  ↦  - 1 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  - 1 ) ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  - 1 ) ‘ 𝑡 )  ·  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 11 | 3 1 2 8 9 10 4 5 6 7 | stoweidlem22 | ⊢ ( ( 𝜑  ∧  𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝐹 ‘ 𝑡 )  −  ( 𝐺 ‘ 𝑡 ) ) )  ∈  𝐴 ) |