| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem34.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem34.2 | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 3 |  | stoweidlem34.3 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 4 |  | stoweidlem34.4 | ⊢ 𝐷  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 5 |  | stoweidlem34.5 | ⊢ 𝐵  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 6 |  | stoweidlem34.6 | ⊢ 𝐽  =  ( 𝑡  ∈  𝑇  ↦  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 7 |  | stoweidlem34.7 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 8 |  | stoweidlem34.8 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 9 |  | stoweidlem34.9 | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 10 |  | stoweidlem34.10 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 11 |  | stoweidlem34.11 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  1 )  ·  𝐸 ) ) | 
						
							| 12 |  | stoweidlem34.12 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 13 |  | stoweidlem34.13 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 14 |  | stoweidlem34.14 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) | 
						
							| 15 |  | stoweidlem34.15 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 16 |  | stoweidlem34.16 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 17 |  | stoweidlem34.17 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 18 |  | stoweidlem34.18 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 20 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 21 | 20 | rabex | ⊢ { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  ∈  V | 
						
							| 22 | 6 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  ∈  V )  →  ( 𝐽 ‘ 𝑡 )  =  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 23 | 19 21 22 | sylancl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐽 ‘ 𝑡 )  =  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 24 |  | ssrab2 | ⊢ { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  ⊆  ( 1 ... 𝑁 ) | 
						
							| 25 | 23 24 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐽 ‘ 𝑡 )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 26 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... 𝑁 )  →  𝑥  ∈  ℕ ) | 
						
							| 27 | 26 | ssriv | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 28 | 25 27 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐽 ‘ 𝑡 )  ⊆  ℕ ) | 
						
							| 29 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 30 | 28 29 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐽 ‘ 𝑡 )  ⊆  ℝ ) | 
						
							| 31 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℕ ) | 
						
							| 32 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 33 | 31 32 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 34 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 36 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 37 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 38 | 36 37 | rereccli | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 40 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℝ ) | 
						
							| 41 | 31 | nnred | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ℝ ) | 
						
							| 42 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 43 | 36 42 | pm3.2i | ⊢ ( 3  ∈  ℝ  ∧  1  <  3 ) | 
						
							| 44 |  | recgt1i | ⊢ ( ( 3  ∈  ℝ  ∧  1  <  3 )  →  ( 0  <  ( 1  /  3 )  ∧  ( 1  /  3 )  <  1 ) ) | 
						
							| 45 | 44 | simprd | ⊢ ( ( 3  ∈  ℝ  ∧  1  <  3 )  →  ( 1  /  3 )  <  1 ) | 
						
							| 46 | 43 45 | mp1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  /  3 )  <  1 ) | 
						
							| 47 | 39 40 41 46 | ltsub2dd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁  −  1 )  <  ( 𝑁  −  ( 1  /  3 ) ) ) | 
						
							| 48 | 41 40 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 49 | 41 39 | resubcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 50 | 12 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℝ ) | 
						
							| 52 | 12 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  <  𝐸 ) | 
						
							| 54 |  | ltmul1 | ⊢ ( ( ( 𝑁  −  1 )  ∈  ℝ  ∧  ( 𝑁  −  ( 1  /  3 ) )  ∈  ℝ  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( ( 𝑁  −  1 )  <  ( 𝑁  −  ( 1  /  3 ) )  ↔  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 55 | 48 49 51 53 54 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑁  −  1 )  <  ( 𝑁  −  ( 1  /  3 ) )  ↔  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 56 | 47 55 | mpbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 57 | 11 56 | jca | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  1 )  ·  𝐸 )  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 58 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 59 | 48 51 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑁  −  1 )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 60 | 49 51 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 61 |  | lttr | ⊢ ( ( ( 𝐹 ‘ 𝑡 )  ∈  ℝ  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  ∈  ℝ  ∧  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  1 )  ·  𝐸 )  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) )  →  ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 62 |  | ltle | ⊢ ( ( ( 𝐹 ‘ 𝑡 )  ∈  ℝ  ∧  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 63 | 62 | 3adant2 | ⊢ ( ( ( 𝐹 ‘ 𝑡 )  ∈  ℝ  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  ∈  ℝ  ∧  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 64 | 61 63 | syld | ⊢ ( ( ( 𝐹 ‘ 𝑡 )  ∈  ℝ  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  ∈  ℝ  ∧  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  1 )  ·  𝐸 )  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 65 | 58 59 60 64 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑁  −  1 )  ·  𝐸 )  ∧  ( ( 𝑁  −  1 )  ·  𝐸 )  <  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 66 | 57 65 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 67 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 68 | 19 66 67 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 69 |  | oveq1 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑗  −  ( 1  /  3 ) )  =  ( 𝑁  −  ( 1  /  3 ) ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 71 | 70 | breq2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 72 | 71 | rabbidv | ⊢ ( 𝑗  =  𝑁  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 73 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 74 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 75 | 73 74 | eleqtrdi | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 76 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 77 | 7 75 76 | 3syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 78 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 79 | 8 78 | syl | ⊢ ( 𝜑  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 80 | 4 72 77 79 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑁 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐷 ‘ 𝑁 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑁  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 82 | 68 81 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  ( 𝐷 ‘ 𝑁 ) ) | 
						
							| 83 |  | nfcv | ⊢ Ⅎ 𝑗 𝑁 | 
						
							| 84 |  | nfcv | ⊢ Ⅎ 𝑗 ( 1 ... 𝑁 ) | 
						
							| 85 |  | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 86 | 4 85 | nfcxfr | ⊢ Ⅎ 𝑗 𝐷 | 
						
							| 87 | 86 83 | nffv | ⊢ Ⅎ 𝑗 ( 𝐷 ‘ 𝑁 ) | 
						
							| 88 | 87 | nfcri | ⊢ Ⅎ 𝑗 𝑡  ∈  ( 𝐷 ‘ 𝑁 ) | 
						
							| 89 |  | fveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑁 ) ) | 
						
							| 90 | 89 | eleq2d | ⊢ ( 𝑗  =  𝑁  →  ( 𝑡  ∈  ( 𝐷 ‘ 𝑗 )  ↔  𝑡  ∈  ( 𝐷 ‘ 𝑁 ) ) ) | 
						
							| 91 | 83 84 88 90 | elrabf | ⊢ ( 𝑁  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  ↔  ( 𝑁  ∈  ( 1 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑁 ) ) ) | 
						
							| 92 | 35 82 91 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 93 | 92 23 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑁  ∈  ( 𝐽 ‘ 𝑡 ) ) | 
						
							| 94 |  | ne0i | ⊢ ( 𝑁  ∈  ( 𝐽 ‘ 𝑡 )  →  ( 𝐽 ‘ 𝑡 )  ≠  ∅ ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐽 ‘ 𝑡 )  ≠  ∅ ) | 
						
							| 96 |  | nnwo | ⊢ ( ( ( 𝐽 ‘ 𝑡 )  ⊆  ℕ  ∧  ( 𝐽 ‘ 𝑡 )  ≠  ∅ )  →  ∃ 𝑖  ∈  ( 𝐽 ‘ 𝑡 ) ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑖  ≤  𝑘 ) | 
						
							| 97 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝐽 ‘ 𝑡 ) | 
						
							| 98 |  | nfcv | ⊢ Ⅎ 𝑗 𝑇 | 
						
							| 99 |  | nfrab1 | ⊢ Ⅎ 𝑗 { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } | 
						
							| 100 | 98 99 | nfmpt | ⊢ Ⅎ 𝑗 ( 𝑡  ∈  𝑇  ↦  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 101 | 6 100 | nfcxfr | ⊢ Ⅎ 𝑗 𝐽 | 
						
							| 102 |  | nfcv | ⊢ Ⅎ 𝑗 𝑡 | 
						
							| 103 | 101 102 | nffv | ⊢ Ⅎ 𝑗 ( 𝐽 ‘ 𝑡 ) | 
						
							| 104 |  | nfv | ⊢ Ⅎ 𝑗 𝑖  ≤  𝑘 | 
						
							| 105 | 103 104 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑖  ≤  𝑘 | 
						
							| 106 |  | nfv | ⊢ Ⅎ 𝑖 ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 | 
						
							| 107 |  | breq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ≤  𝑘  ↔  𝑗  ≤  𝑘 ) ) | 
						
							| 108 | 107 | ralbidv | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑖  ≤  𝑘  ↔  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) ) | 
						
							| 109 | 97 103 105 106 108 | cbvrexfw | ⊢ ( ∃ 𝑖  ∈  ( 𝐽 ‘ 𝑡 ) ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑖  ≤  𝑘  ↔  ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) | 
						
							| 110 | 96 109 | sylib | ⊢ ( ( ( 𝐽 ‘ 𝑡 )  ⊆  ℕ  ∧  ( 𝐽 ‘ 𝑡 )  ≠  ∅ )  →  ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) | 
						
							| 111 | 28 95 110 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) | 
						
							| 112 |  | nfv | ⊢ Ⅎ 𝑗 𝑡  ∈  𝑇 | 
						
							| 113 | 2 112 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑡  ∈  𝑇 ) | 
						
							| 114 | 23 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ↔  𝑗  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) ) | 
						
							| 115 | 114 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  𝑗  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 116 |  | rabid | ⊢ ( 𝑗  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  ↔  ( 𝑗  ∈  ( 1 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 117 | 115 116 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 118 | 117 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 120 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 121 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  𝜑 ) | 
						
							| 122 |  | noel | ⊢ ¬  𝑡  ∈  ∅ | 
						
							| 123 |  | oveq1 | ⊢ ( 𝑗  =  1  →  ( 𝑗  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 124 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 125 | 123 124 | eqtrdi | ⊢ ( 𝑗  =  1  →  ( 𝑗  −  1 )  =  0 ) | 
						
							| 126 | 125 | fveq2d | ⊢ ( 𝑗  =  1  →  ( 𝐷 ‘ ( 𝑗  −  1 ) )  =  ( 𝐷 ‘ 0 ) ) | 
						
							| 127 | 36 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  3  ∈  ℝ ) | 
						
							| 128 | 37 | a1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  3  ≠  0 ) | 
						
							| 129 | 40 127 128 | redivcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 130 | 129 | renegcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  - ( 1  /  3 )  ∈  ℝ ) | 
						
							| 131 | 130 51 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( - ( 1  /  3 )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 132 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ∈  ℝ ) | 
						
							| 133 |  | 3pos | ⊢ 0  <  3 | 
						
							| 134 | 36 133 | recgt0ii | ⊢ 0  <  ( 1  /  3 ) | 
						
							| 135 |  | lt0neg2 | ⊢ ( ( 1  /  3 )  ∈  ℝ  →  ( 0  <  ( 1  /  3 )  ↔  - ( 1  /  3 )  <  0 ) ) | 
						
							| 136 | 38 135 | ax-mp | ⊢ ( 0  <  ( 1  /  3 )  ↔  - ( 1  /  3 )  <  0 ) | 
						
							| 137 | 134 136 | mpbi | ⊢ - ( 1  /  3 )  <  0 | 
						
							| 138 |  | ltmul1 | ⊢ ( ( - ( 1  /  3 )  ∈  ℝ  ∧  0  ∈  ℝ  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( - ( 1  /  3 )  <  0  ↔  ( - ( 1  /  3 )  ·  𝐸 )  <  ( 0  ·  𝐸 ) ) ) | 
						
							| 139 | 130 132 51 53 138 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( - ( 1  /  3 )  <  0  ↔  ( - ( 1  /  3 )  ·  𝐸 )  <  ( 0  ·  𝐸 ) ) ) | 
						
							| 140 | 137 139 | mpbii | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( - ( 1  /  3 )  ·  𝐸 )  <  ( 0  ·  𝐸 ) ) | 
						
							| 141 |  | mul02lem2 | ⊢ ( 𝐸  ∈  ℝ  →  ( 0  ·  𝐸 )  =  0 ) | 
						
							| 142 | 51 141 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 0  ·  𝐸 )  =  0 ) | 
						
							| 143 | 140 142 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( - ( 1  /  3 )  ·  𝐸 )  <  0 ) | 
						
							| 144 | 131 132 58 143 10 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( - ( 1  /  3 )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 145 | 131 58 | ltnled | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( - ( 1  /  3 )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ↔  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) ) | 
						
							| 146 | 144 145 | mpbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) | 
						
							| 147 |  | nan | ⊢ ( ( 𝜑  →  ¬  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) ) | 
						
							| 148 | 146 147 | mpbir | ⊢ ( 𝜑  →  ¬  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) ) | 
						
							| 149 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) ) | 
						
							| 150 | 148 149 | sylnibr | ⊢ ( 𝜑  →  ¬  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) } ) | 
						
							| 151 |  | oveq1 | ⊢ ( 𝑗  =  0  →  ( 𝑗  −  ( 1  /  3 ) )  =  ( 0  −  ( 1  /  3 ) ) ) | 
						
							| 152 |  | df-neg | ⊢ - ( 1  /  3 )  =  ( 0  −  ( 1  /  3 ) ) | 
						
							| 153 | 151 152 | eqtr4di | ⊢ ( 𝑗  =  0  →  ( 𝑗  −  ( 1  /  3 ) )  =  - ( 1  /  3 ) ) | 
						
							| 154 | 153 | oveq1d | ⊢ ( 𝑗  =  0  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( - ( 1  /  3 )  ·  𝐸 ) ) | 
						
							| 155 | 154 | breq2d | ⊢ ( 𝑗  =  0  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) ) ) | 
						
							| 156 | 155 | rabbidv | ⊢ ( 𝑗  =  0  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) } ) | 
						
							| 157 | 7 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 158 |  | elnn0uz | ⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 159 | 157 158 | sylib | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 160 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 161 | 159 160 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 162 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) }  ∈  V ) | 
						
							| 163 | 8 162 | syl | ⊢ ( 𝜑  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) }  ∈  V ) | 
						
							| 164 | 4 156 161 163 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 0 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( - ( 1  /  3 )  ·  𝐸 ) } ) | 
						
							| 165 | 150 164 | neleqtrrd | ⊢ ( 𝜑  →  ¬  𝑡  ∈  ( 𝐷 ‘ 0 ) ) | 
						
							| 166 | 3 165 | alrimi | ⊢ ( 𝜑  →  ∀ 𝑡 ¬  𝑡  ∈  ( 𝐷 ‘ 0 ) ) | 
						
							| 167 |  | nfcv | ⊢ Ⅎ 𝑡 ( 0 ... 𝑁 ) | 
						
							| 168 |  | nfrab1 | ⊢ Ⅎ 𝑡 { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } | 
						
							| 169 | 167 168 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 170 | 4 169 | nfcxfr | ⊢ Ⅎ 𝑡 𝐷 | 
						
							| 171 |  | nfcv | ⊢ Ⅎ 𝑡 0 | 
						
							| 172 | 170 171 | nffv | ⊢ Ⅎ 𝑡 ( 𝐷 ‘ 0 ) | 
						
							| 173 | 172 | eq0f | ⊢ ( ( 𝐷 ‘ 0 )  =  ∅  ↔  ∀ 𝑡 ¬  𝑡  ∈  ( 𝐷 ‘ 0 ) ) | 
						
							| 174 | 166 173 | sylibr | ⊢ ( 𝜑  →  ( 𝐷 ‘ 0 )  =  ∅ ) | 
						
							| 175 | 126 174 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑗  =  1 )  →  ( 𝐷 ‘ ( 𝑗  −  1 ) )  =  ∅ ) | 
						
							| 176 | 175 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  1 )  →  ( 𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) )  ↔  𝑡  ∈  ∅ ) ) | 
						
							| 177 | 122 176 | mtbiri | ⊢ ( ( 𝜑  ∧  𝑗  =  1 )  →  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 178 | 177 | ex | ⊢ ( 𝜑  →  ( 𝑗  =  1  →  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 179 | 178 | con2d | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) )  →  ¬  𝑗  =  1 ) ) | 
						
							| 180 | 121 120 179 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ¬  𝑗  =  1 ) | 
						
							| 181 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  ¬  𝑗  =  1 )  →  𝜑 ) | 
						
							| 182 | 114 116 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ↔  ( 𝑗  ∈  ( 1 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) ) ) | 
						
							| 183 | 182 | simprbda | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 184 | 7 32 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 185 | 184 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 186 |  | elfzp12 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  =  1  ∨  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 187 | 185 186 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  =  1  ∨  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 188 | 187 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  =  1  ∨  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 189 | 183 188 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( 𝑗  =  1  ∨  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) ) ) | 
						
							| 190 | 189 | orcanai | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  ¬  𝑗  =  1 )  →  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) ) | 
						
							| 191 |  | fzssp1 | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 192 | 7 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 193 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 194 | 192 193 | npcand | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 195 | 194 | oveq2d | ⊢ ( 𝜑  →  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 196 | 191 195 | sseqtrid | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 197 | 196 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 198 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) ) | 
						
							| 199 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 200 |  | zaddcl | ⊢ ( ( 1  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 1  +  1 )  ∈  ℤ ) | 
						
							| 201 | 199 199 200 | mp2an | ⊢ ( 1  +  1 )  ∈  ℤ | 
						
							| 202 | 201 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  ( 1  +  1 )  ∈  ℤ ) | 
						
							| 203 | 7 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 204 | 203 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 205 |  | elfzelz | ⊢ ( 𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 )  →  𝑗  ∈  ℤ ) | 
						
							| 206 | 205 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 207 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  1  ∈  ℤ ) | 
						
							| 208 |  | fzsubel | ⊢ ( ( ( ( 1  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑗  ∈  ℤ  ∧  1  ∈  ℤ ) )  →  ( 𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 )  ↔  ( 𝑗  −  1 )  ∈  ( ( ( 1  +  1 )  −  1 ) ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 209 | 202 204 206 207 208 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  ( 𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 )  ↔  ( 𝑗  −  1 )  ∈  ( ( ( 1  +  1 )  −  1 ) ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 210 | 198 209 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( ( ( 1  +  1 )  −  1 ) ... ( 𝑁  −  1 ) ) ) | 
						
							| 211 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 212 | 211 211 | pncan3oi | ⊢ ( ( 1  +  1 )  −  1 )  =  1 | 
						
							| 213 | 212 | oveq1i | ⊢ ( ( ( 1  +  1 )  −  1 ) ... ( 𝑁  −  1 ) )  =  ( 1 ... ( 𝑁  −  1 ) ) | 
						
							| 214 | 210 213 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 215 | 197 214 | sseldd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 1  +  1 ) ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 216 | 181 190 215 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  ¬  𝑗  =  1 )  →  ( 𝑗  −  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 217 | 216 | ex | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( ¬  𝑗  =  1  →  ( 𝑗  −  1 )  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 218 | 217 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( ¬  𝑗  =  1  →  ( 𝑗  −  1 )  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 219 | 180 218 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( 𝑗  −  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 220 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 221 | 220 | eleq2d | ⊢ ( 𝑖  =  ( 𝑗  −  1 )  →  ( 𝑡  ∈  ( 𝐷 ‘ 𝑖 )  ↔  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 222 | 221 | elrab3 | ⊢ ( ( 𝑗  −  1 )  ∈  ( 1 ... 𝑁 )  →  ( ( 𝑗  −  1 )  ∈  { 𝑖  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) }  ↔  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 223 | 219 222 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( ( 𝑗  −  1 )  ∈  { 𝑖  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) }  ↔  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 224 | 120 223 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( 𝑗  −  1 )  ∈  { 𝑖  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) } ) | 
						
							| 225 |  | nfcv | ⊢ Ⅎ 𝑖 ( 1 ... 𝑁 ) | 
						
							| 226 |  | nfv | ⊢ Ⅎ 𝑖 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) | 
						
							| 227 |  | nfcv | ⊢ Ⅎ 𝑗 𝑖 | 
						
							| 228 | 86 227 | nffv | ⊢ Ⅎ 𝑗 ( 𝐷 ‘ 𝑖 ) | 
						
							| 229 | 228 | nfcri | ⊢ Ⅎ 𝑗 𝑡  ∈  ( 𝐷 ‘ 𝑖 ) | 
						
							| 230 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 231 | 230 | eleq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑡  ∈  ( 𝐷 ‘ 𝑗 )  ↔  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 232 | 84 225 226 229 231 | cbvrabw | ⊢ { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  =  { 𝑖  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) } | 
						
							| 233 | 224 232 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( 𝑗  −  1 )  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 234 | 23 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( 𝐽 ‘ 𝑡 )  =  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 235 | 233 234 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ( 𝑗  −  1 )  ∈  ( 𝐽 ‘ 𝑡 ) ) | 
						
							| 236 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 1 ... 𝑁 )  →  𝑗  ∈  ℤ ) | 
						
							| 237 |  | zre | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ℝ ) | 
						
							| 238 | 183 236 237 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 239 | 238 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 240 |  | peano2rem | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  −  1 )  ∈  ℝ ) | 
						
							| 241 |  | ltm1 | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  −  1 )  <  𝑗 ) | 
						
							| 242 | 241 | adantr | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 𝑗  −  1 )  ∈  ℝ )  →  ( 𝑗  −  1 )  <  𝑗 ) | 
						
							| 243 |  | ltnle | ⊢ ( ( ( 𝑗  −  1 )  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( ( 𝑗  −  1 )  <  𝑗  ↔  ¬  𝑗  ≤  ( 𝑗  −  1 ) ) ) | 
						
							| 244 | 243 | ancoms | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 𝑗  −  1 )  ∈  ℝ )  →  ( ( 𝑗  −  1 )  <  𝑗  ↔  ¬  𝑗  ≤  ( 𝑗  −  1 ) ) ) | 
						
							| 245 | 242 244 | mpbid | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 𝑗  −  1 )  ∈  ℝ )  →  ¬  𝑗  ≤  ( 𝑗  −  1 ) ) | 
						
							| 246 | 239 240 245 | syl2anc2 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ¬  𝑗  ≤  ( 𝑗  −  1 ) ) | 
						
							| 247 |  | breq2 | ⊢ ( 𝑘  =  ( 𝑗  −  1 )  →  ( 𝑗  ≤  𝑘  ↔  𝑗  ≤  ( 𝑗  −  1 ) ) ) | 
						
							| 248 | 247 | notbid | ⊢ ( 𝑘  =  ( 𝑗  −  1 )  →  ( ¬  𝑗  ≤  𝑘  ↔  ¬  𝑗  ≤  ( 𝑗  −  1 ) ) ) | 
						
							| 249 | 248 | rspcev | ⊢ ( ( ( 𝑗  −  1 )  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑗  ≤  ( 𝑗  −  1 ) )  →  ∃ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) ¬  𝑗  ≤  𝑘 ) | 
						
							| 250 | 235 246 249 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ∃ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) ¬  𝑗  ≤  𝑘 ) | 
						
							| 251 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) ¬  𝑗  ≤  𝑘  ↔  ¬  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) | 
						
							| 252 | 250 251 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ¬  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) | 
						
							| 253 | 252 | 3expia | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( 𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) )  →  ¬  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 ) ) | 
						
							| 254 | 253 | con2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  ( ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘  →  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 255 | 254 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 )  →  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 256 | 119 255 | eldifd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘 )  →  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 257 | 256 | exp31 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  →  ( ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘  →  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) ) | 
						
							| 258 | 113 257 | reximdai | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ∀ 𝑘  ∈  ( 𝐽 ‘ 𝑡 ) 𝑗  ≤  𝑘  →  ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) 𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) | 
						
							| 259 | 111 258 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) 𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 260 |  | df-rex | ⊢ ( ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) 𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  ↔  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) | 
						
							| 261 | 259 260 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) | 
						
							| 262 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ) | 
						
							| 263 |  | eldifn | ⊢ ( 𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 264 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 265 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  𝜑 ) | 
						
							| 266 | 183 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 267 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 268 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  −  ( 1  /  3 ) )  =  ( 𝑘  −  ( 1  /  3 ) ) ) | 
						
							| 269 | 268 | oveq1d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 270 | 269 | breq2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 271 | 270 | rabbidv | ⊢ ( 𝑗  =  𝑘  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 272 | 271 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } )  =  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 273 | 4 272 | eqtri | ⊢ 𝐷  =  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 274 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑗  −  1 )  →  ( 𝑘  −  ( 1  /  3 ) )  =  ( ( 𝑗  −  1 )  −  ( 1  /  3 ) ) ) | 
						
							| 275 | 274 | oveq1d | ⊢ ( 𝑘  =  ( 𝑗  −  1 )  →  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 276 | 275 | breq2d | ⊢ ( 𝑘  =  ( 𝑗  −  1 )  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 277 | 276 | rabbidv | ⊢ ( 𝑘  =  ( 𝑗  −  1 )  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 278 |  | fzssp1 | ⊢ ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 279 | 194 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 280 | 278 279 | sseqtrid | ⊢ ( 𝜑  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 281 | 280 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 282 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 283 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  1  ∈  ℤ ) | 
						
							| 284 | 203 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 285 | 236 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 286 |  | fzsubel | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑗  ∈  ℤ  ∧  1  ∈  ℤ ) )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  −  1 )  ∈  ( ( 1  −  1 ) ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 287 | 283 284 285 283 286 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑗  −  1 )  ∈  ( ( 1  −  1 ) ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 288 | 282 287 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( ( 1  −  1 ) ... ( 𝑁  −  1 ) ) ) | 
						
							| 289 | 124 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 1  −  1 )  =  0 ) | 
						
							| 290 | 289 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ( 1  −  1 ) ... ( 𝑁  −  1 ) )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 291 | 288 290 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 292 | 281 291 | sseldd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑗  −  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 293 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑇  ∈  V ) | 
						
							| 294 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 295 | 293 294 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 296 | 273 277 292 295 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐷 ‘ ( 𝑗  −  1 ) )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 297 | 296 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) )  ↔  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) } ) ) | 
						
							| 298 | 297 | notbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) )  ↔  ¬  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) } ) ) | 
						
							| 299 | 298 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) )  →  ¬  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 300 | 265 266 267 299 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ¬  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 301 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 302 | 238 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 303 |  | recn | ⊢ ( 𝑗  ∈  ℝ  →  𝑗  ∈  ℂ ) | 
						
							| 304 |  | 1cnd | ⊢ ( 𝑗  ∈  ℝ  →  1  ∈  ℂ ) | 
						
							| 305 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 306 | 305 36 37 | 3pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  3  ∈  ℝ  ∧  3  ≠  0 ) | 
						
							| 307 |  | redivcl | ⊢ ( ( 1  ∈  ℝ  ∧  3  ∈  ℝ  ∧  3  ≠  0 )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 308 |  | recn | ⊢ ( ( 1  /  3 )  ∈  ℝ  →  ( 1  /  3 )  ∈  ℂ ) | 
						
							| 309 | 306 307 308 | mp2b | ⊢ ( 1  /  3 )  ∈  ℂ | 
						
							| 310 | 309 | a1i | ⊢ ( 𝑗  ∈  ℝ  →  ( 1  /  3 )  ∈  ℂ ) | 
						
							| 311 | 303 304 310 | subsub4d | ⊢ ( 𝑗  ∈  ℝ  →  ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  =  ( 𝑗  −  ( 1  +  ( 1  /  3 ) ) ) ) | 
						
							| 312 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 313 | 312 211 312 37 | divdiri | ⊢ ( ( 3  +  1 )  /  3 )  =  ( ( 3  /  3 )  +  ( 1  /  3 ) ) | 
						
							| 314 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 315 | 314 | oveq1i | ⊢ ( ( 3  +  1 )  /  3 )  =  ( 4  /  3 ) | 
						
							| 316 | 312 37 | dividi | ⊢ ( 3  /  3 )  =  1 | 
						
							| 317 | 316 | oveq1i | ⊢ ( ( 3  /  3 )  +  ( 1  /  3 ) )  =  ( 1  +  ( 1  /  3 ) ) | 
						
							| 318 | 313 315 317 | 3eqtr3i | ⊢ ( 4  /  3 )  =  ( 1  +  ( 1  /  3 ) ) | 
						
							| 319 | 318 | a1i | ⊢ ( 𝑗  ∈  ℝ  →  ( 4  /  3 )  =  ( 1  +  ( 1  /  3 ) ) ) | 
						
							| 320 | 319 | oveq2d | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  −  ( 4  /  3 ) )  =  ( 𝑗  −  ( 1  +  ( 1  /  3 ) ) ) ) | 
						
							| 321 | 311 320 | eqtr4d | ⊢ ( 𝑗  ∈  ℝ  →  ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  =  ( 𝑗  −  ( 4  /  3 ) ) ) | 
						
							| 322 | 321 | oveq1d | ⊢ ( 𝑗  ∈  ℝ  →  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) | 
						
							| 323 | 302 322 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) | 
						
							| 324 | 323 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 325 | 324 | anbi2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ( ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) )  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) ) | 
						
							| 326 | 301 325 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( ( 𝑗  −  1 )  −  ( 1  /  3 ) )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) ) | 
						
							| 327 | 300 326 | mtbid | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ¬  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 328 |  | imnan | ⊢ ( ( 𝑡  ∈  𝑇  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) )  ↔  ¬  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 329 | 327 328 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ( 𝑡  ∈  𝑇  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 330 | 264 329 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ¬  𝑡  ∈  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) | 
						
							| 331 | 263 330 | sylanr2 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) | 
						
							| 332 | 238 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 333 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 334 | 333 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  4  ∈  ℝ ) | 
						
							| 335 | 36 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  3  ∈  ℝ ) | 
						
							| 336 | 37 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  3  ≠  0 ) | 
						
							| 337 | 334 335 336 | redivcld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( 4  /  3 )  ∈  ℝ ) | 
						
							| 338 | 332 337 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( 𝑗  −  ( 4  /  3 ) )  ∈  ℝ ) | 
						
							| 339 | 50 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝐸  ∈  ℝ ) | 
						
							| 340 |  | remulcl | ⊢ ( ( ( 𝑗  −  ( 4  /  3 ) )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 341 | 340 | rexrd | ⊢ ( ( ( 𝑗  −  ( 4  /  3 ) )  ∈  ℝ  ∧  𝐸  ∈  ℝ )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  ∈  ℝ* ) | 
						
							| 342 | 338 339 341 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  ∈  ℝ* ) | 
						
							| 343 | 58 | rexrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ* ) | 
						
							| 344 | 343 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ* ) | 
						
							| 345 |  | xrltnle | ⊢ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑡 )  ∈  ℝ* )  →  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ↔  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 346 | 342 344 345 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ↔  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 347 | 331 346 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 348 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( 𝜑  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 349 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 350 | 349 | eldifad | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 351 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝜑 ) | 
						
							| 352 | 183 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 353 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 354 |  | oveq1 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  −  ( 1  /  3 ) )  =  ( 𝑗  −  ( 1  /  3 ) ) ) | 
						
							| 355 | 354 | oveq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 356 | 355 | breq2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 357 | 356 | rabbidv | ⊢ ( 𝑘  =  𝑗  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑘  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 358 |  | fz1ssfz0 | ⊢ ( 1 ... 𝑁 )  ⊆  ( 0 ... 𝑁 ) | 
						
							| 359 | 358 | sseli | ⊢ ( 𝑗  ∈  ( 1 ... 𝑁 )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 360 | 359 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 361 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 362 | 293 361 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 363 | 273 357 360 362 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 364 | 363 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑡  ∈  ( 𝐷 ‘ 𝑗 )  ↔  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) ) | 
						
							| 365 | 364 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 366 | 351 352 353 365 | syl21anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 367 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 368 | 366 367 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 369 | 368 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 370 | 348 262 350 369 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 371 | 347 370 | jca | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 372 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 373 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 374 | 183 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 375 |  | nfv | ⊢ Ⅎ 𝑗 𝑖  ∈  ( 0 ... 𝑁 ) | 
						
							| 376 | 2 375 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 377 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ | 
						
							| 378 | 376 377 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 379 |  | eleq1w | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↔  𝑖  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 380 | 379 | anbi2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 381 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑋 ‘ 𝑗 )  =  ( 𝑋 ‘ 𝑖 ) ) | 
						
							| 382 | 381 | feq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑋 ‘ 𝑗 ) : 𝑇 ⟶ ℝ  ↔  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 383 | 380 382 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑗 ) : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 384 | 378 383 14 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 385 | 384 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 386 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 387 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 388 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 389 | 2 375 112 | nf3an | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 ) | 
						
							| 390 |  | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 | 
						
							| 391 | 389 390 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 392 | 379 | 3anbi2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  ↔  ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 ) ) ) | 
						
							| 393 | 381 | fveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  =  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 394 | 393 | breq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1  ↔  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 395 | 392 394 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 396 | 391 395 16 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 397 | 386 387 388 396 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 398 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 399 |  | 0zd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  0  ∈  ℤ ) | 
						
							| 400 |  | elfzel2 | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 401 | 400 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 402 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑖  ∈  ℤ ) | 
						
							| 403 | 402 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 404 |  | 0red | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  0  ∈  ℝ ) | 
						
							| 405 |  | elfzel1 | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑗  ∈  ℤ ) | 
						
							| 406 | 405 | zred | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑗  ∈  ℝ ) | 
						
							| 407 | 406 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 408 | 402 | zred | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑖  ∈  ℝ ) | 
						
							| 409 | 408 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 410 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  0  ∈  ℝ ) | 
						
							| 411 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  1  ∈  ℝ ) | 
						
							| 412 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 413 | 412 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  0  ≤  1 ) | 
						
							| 414 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 1 ... 𝑁 )  →  1  ≤  𝑗 ) | 
						
							| 415 | 183 414 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  1  ≤  𝑗 ) | 
						
							| 416 | 410 411 238 413 415 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  →  0  ≤  𝑗 ) | 
						
							| 417 | 416 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  0  ≤  𝑗 ) | 
						
							| 418 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑗  ≤  𝑖 ) | 
						
							| 419 | 418 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ≤  𝑖 ) | 
						
							| 420 | 404 407 409 417 419 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  0  ≤  𝑖 ) | 
						
							| 421 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 𝑗 ... 𝑁 )  →  𝑖  ≤  𝑁 ) | 
						
							| 422 | 421 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ≤  𝑁 ) | 
						
							| 423 | 399 401 403 420 422 | elfzd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 424 | 423 | adantlrr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 425 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝜑  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 426 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ) | 
						
							| 427 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 428 | 427 | eldifad | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 429 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ( 𝑗 ... 𝑁 ) ) | 
						
							| 430 |  | simpl1 | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝜑  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 431 | 430 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 432 | 430 58 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 433 | 406 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 434 | 38 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 435 | 433 434 | resubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 436 |  | simpl1l | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 437 | 436 50 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 438 | 435 437 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 439 | 408 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 440 | 38 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 441 | 439 440 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝑖  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 442 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 443 | 441 442 | remulcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 444 | 436 443 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 445 |  | simpl3 | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 446 |  | simpl2 | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ) | 
						
							| 447 | 430 446 183 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 448 | 436 447 363 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 449 | 445 448 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 450 | 449 367 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 451 | 450 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 452 | 408 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 453 | 418 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑗  ≤  𝑖 ) | 
						
							| 454 | 433 452 434 453 | lesub1dd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝑗  −  ( 1  /  3 ) )  ≤  ( 𝑖  −  ( 1  /  3 ) ) ) | 
						
							| 455 | 436 441 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝑖  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 456 | 12 | rpregt0d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) ) | 
						
							| 457 | 436 456 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) ) | 
						
							| 458 |  | lemul1 | ⊢ ( ( ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ  ∧  ( 𝑖  −  ( 1  /  3 ) )  ∈  ℝ  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ≤  ( 𝑖  −  ( 1  /  3 ) )  ↔  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 459 | 435 455 457 458 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ≤  ( 𝑖  −  ( 1  /  3 ) )  ↔  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 460 | 454 459 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 461 | 432 438 444 451 460 | letrd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 462 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 463 | 431 461 462 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 464 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ( 𝑗 ... 𝑁 ) ) | 
						
							| 465 |  | 0zd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  0  ∈  ℤ ) | 
						
							| 466 | 400 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 467 | 402 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 468 | 465 466 467 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑖  ∈  ℤ ) ) | 
						
							| 469 | 420 422 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 0  ≤  𝑖  ∧  𝑖  ≤  𝑁 ) ) | 
						
							| 470 | 469 | 3impa | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 0  ≤  𝑖  ∧  𝑖  ≤  𝑁 ) ) | 
						
							| 471 |  | elfz2 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑁 )  ↔  ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 0  ≤  𝑖  ∧  𝑖  ≤  𝑁 ) ) ) | 
						
							| 472 | 468 470 471 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 473 | 430 446 464 472 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 474 |  | oveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  −  ( 1  /  3 ) )  =  ( 𝑖  −  ( 1  /  3 ) ) ) | 
						
							| 475 | 474 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  =  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 476 | 475 | breq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 477 | 476 | rabbidv | ⊢ ( 𝑗  =  𝑖  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 478 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 479 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 480 | 8 479 | syl | ⊢ ( 𝜑  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 481 | 480 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 482 | 4 477 478 481 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑖 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 483 | 436 473 482 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑖 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑖  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 484 | 463 483 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 485 | 425 426 428 429 484 | syl31anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 486 | 2 375 229 | nf3an | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 487 |  | nfv | ⊢ Ⅎ 𝑗 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) | 
						
							| 488 | 486 487 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 489 | 379 231 | 3anbi23d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  ↔  ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 490 | 393 | breq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 491 | 489 490 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) ) | 
						
							| 492 | 488 491 17 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑖 ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 493 | 398 424 485 492 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 𝑗 ... 𝑁 ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 494 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 495 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 496 | 372 373 374 385 397 493 494 495 | stoweidlem11 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 497 |  | eleq1w | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ↔  𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ) ) | 
						
							| 498 |  | fveq2 | ⊢ ( 𝑙  =  𝑗  →  ( 𝐷 ‘ 𝑙 )  =  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 499 |  | oveq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  −  1 )  =  ( 𝑗  −  1 ) ) | 
						
							| 500 | 499 | fveq2d | ⊢ ( 𝑙  =  𝑗  →  ( 𝐷 ‘ ( 𝑙  −  1 ) )  =  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) | 
						
							| 501 | 498 500 | difeq12d | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) )  =  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) | 
						
							| 502 | 501 | eleq2d | ⊢ ( 𝑙  =  𝑗  →  ( 𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) )  ↔  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) | 
						
							| 503 | 497 502 | anbi12d | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) )  ↔  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) ) | 
						
							| 504 | 503 | anbi2d | ⊢ ( 𝑙  =  𝑗  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) ) ) ) | 
						
							| 505 |  | oveq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  −  ( 4  /  3 ) )  =  ( 𝑗  −  ( 4  /  3 ) ) ) | 
						
							| 506 | 505 | oveq1d | ⊢ ( 𝑙  =  𝑗  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  =  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 ) ) | 
						
							| 507 | 506 | breq1d | ⊢ ( 𝑙  =  𝑗  →  ( ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  ↔  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 508 | 504 507 | imbi12d | ⊢ ( 𝑙  =  𝑗  →  ( ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) )  ↔  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 509 |  | eleq1w | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ∈  𝑇  ↔  𝑡  ∈  𝑇 ) ) | 
						
							| 510 | 509 | anbi2d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ↔  ( 𝜑  ∧  𝑡  ∈  𝑇 ) ) ) | 
						
							| 511 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝐽 ‘ 𝑠 )  =  ( 𝐽 ‘ 𝑡 ) ) | 
						
							| 512 | 511 | eleq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ↔  𝑙  ∈  ( 𝐽 ‘ 𝑡 ) ) ) | 
						
							| 513 |  | eleq1w | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) )  ↔  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) ) | 
						
							| 514 | 512 513 | anbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) )  ↔  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) ) ) | 
						
							| 515 | 510 514 | anbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) ) ) ) | 
						
							| 516 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 )  =  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) | 
						
							| 517 | 516 | breq2d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 )  ↔  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 518 | 515 517 | imbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 ) )  ↔  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 519 |  | nfv | ⊢ Ⅎ 𝑗 𝑠  ∈  𝑇 | 
						
							| 520 | 2 519 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑠  ∈  𝑇 ) | 
						
							| 521 |  | nfcv | ⊢ Ⅎ 𝑗 𝑠 | 
						
							| 522 | 101 521 | nffv | ⊢ Ⅎ 𝑗 ( 𝐽 ‘ 𝑠 ) | 
						
							| 523 | 522 | nfcri | ⊢ Ⅎ 𝑗 𝑙  ∈  ( 𝐽 ‘ 𝑠 ) | 
						
							| 524 |  | nfcv | ⊢ Ⅎ 𝑗 𝑙 | 
						
							| 525 | 86 524 | nffv | ⊢ Ⅎ 𝑗 ( 𝐷 ‘ 𝑙 ) | 
						
							| 526 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝑙  −  1 ) | 
						
							| 527 | 86 526 | nffv | ⊢ Ⅎ 𝑗 ( 𝐷 ‘ ( 𝑙  −  1 ) ) | 
						
							| 528 | 525 527 | nfdif | ⊢ Ⅎ 𝑗 ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) | 
						
							| 529 | 528 | nfcri | ⊢ Ⅎ 𝑗 𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) | 
						
							| 530 | 523 529 | nfan | ⊢ Ⅎ 𝑗 ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) | 
						
							| 531 | 520 530 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) ) | 
						
							| 532 |  | nfv | ⊢ Ⅎ 𝑡 𝑠  ∈  𝑇 | 
						
							| 533 | 3 532 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑠  ∈  𝑇 ) | 
						
							| 534 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 535 | 6 534 | nfcxfr | ⊢ Ⅎ 𝑡 𝐽 | 
						
							| 536 |  | nfcv | ⊢ Ⅎ 𝑡 𝑠 | 
						
							| 537 | 535 536 | nffv | ⊢ Ⅎ 𝑡 ( 𝐽 ‘ 𝑠 ) | 
						
							| 538 | 537 | nfcri | ⊢ Ⅎ 𝑡 𝑙  ∈  ( 𝐽 ‘ 𝑠 ) | 
						
							| 539 |  | nfcv | ⊢ Ⅎ 𝑡 𝑙 | 
						
							| 540 | 170 539 | nffv | ⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑙 ) | 
						
							| 541 |  | nfcv | ⊢ Ⅎ 𝑡 ( 𝑙  −  1 ) | 
						
							| 542 | 170 541 | nffv | ⊢ Ⅎ 𝑡 ( 𝐷 ‘ ( 𝑙  −  1 ) ) | 
						
							| 543 | 540 542 | nfdif | ⊢ Ⅎ 𝑡 ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) | 
						
							| 544 | 543 | nfcri | ⊢ Ⅎ 𝑡 𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) | 
						
							| 545 | 538 544 | nfan | ⊢ Ⅎ 𝑡 ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) | 
						
							| 546 | 533 545 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) ) | 
						
							| 547 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 548 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝑇  ∈  V ) | 
						
							| 549 | 20 | rabex | ⊢ { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) }  ∈  V | 
						
							| 550 |  | nfcv | ⊢ Ⅎ 𝑡 𝑗 | 
						
							| 551 | 170 550 | nffv | ⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑗 ) | 
						
							| 552 | 551 | nfcri | ⊢ Ⅎ 𝑡 𝑠  ∈  ( 𝐷 ‘ 𝑗 ) | 
						
							| 553 |  | nfcv | ⊢ Ⅎ 𝑡 ( 1 ... 𝑁 ) | 
						
							| 554 | 552 553 | nfrabw | ⊢ Ⅎ 𝑡 { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) } | 
						
							| 555 |  | eleq1w | ⊢ ( 𝑡  =  𝑠  →  ( 𝑡  ∈  ( 𝐷 ‘ 𝑗 )  ↔  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 556 | 555 | rabbidv | ⊢ ( 𝑡  =  𝑠  →  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) }  =  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 557 | 536 554 556 6 | fvmptf | ⊢ ( ( 𝑠  ∈  𝑇  ∧  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) }  ∈  V )  →  ( 𝐽 ‘ 𝑠 )  =  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 558 | 549 557 | mpan2 | ⊢ ( 𝑠  ∈  𝑇  →  ( 𝐽 ‘ 𝑠 )  =  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 559 | 558 | eleq2d | ⊢ ( 𝑠  ∈  𝑇  →  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ↔  𝑙  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) } ) ) | 
						
							| 560 | 559 | biimpa | ⊢ ( ( 𝑠  ∈  𝑇  ∧  𝑙  ∈  ( 𝐽 ‘ 𝑠 ) )  →  𝑙  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 561 | 525 | nfcri | ⊢ Ⅎ 𝑗 𝑠  ∈  ( 𝐷 ‘ 𝑙 ) | 
						
							| 562 |  | fveq2 | ⊢ ( 𝑗  =  𝑙  →  ( 𝐷 ‘ 𝑗 )  =  ( 𝐷 ‘ 𝑙 ) ) | 
						
							| 563 | 562 | eleq2d | ⊢ ( 𝑗  =  𝑙  →  ( 𝑠  ∈  ( 𝐷 ‘ 𝑗 )  ↔  𝑠  ∈  ( 𝐷 ‘ 𝑙 ) ) ) | 
						
							| 564 | 524 84 561 563 | elrabf | ⊢ ( 𝑙  ∈  { 𝑗  ∈  ( 1 ... 𝑁 )  ∣  𝑠  ∈  ( 𝐷 ‘ 𝑗 ) }  ↔  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑠  ∈  ( 𝐷 ‘ 𝑙 ) ) ) | 
						
							| 565 | 560 564 | sylib | ⊢ ( ( 𝑠  ∈  𝑇  ∧  𝑙  ∈  ( 𝐽 ‘ 𝑠 ) )  →  ( 𝑙  ∈  ( 1 ... 𝑁 )  ∧  𝑠  ∈  ( 𝐷 ‘ 𝑙 ) ) ) | 
						
							| 566 | 565 | simpld | ⊢ ( ( 𝑠  ∈  𝑇  ∧  𝑙  ∈  ( 𝐽 ‘ 𝑠 ) )  →  𝑙  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 567 | 566 | ad2ant2lr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝑙  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 568 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) | 
						
							| 569 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 570 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 571 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 572 | 384 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 573 |  | simp1ll | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  𝜑 ) | 
						
							| 574 |  | nfv | ⊢ Ⅎ 𝑗 0  ≤  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 575 | 389 574 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 576 | 393 | breq2d | ⊢ ( 𝑗  =  𝑖  →  ( 0  ≤  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  ↔  0  ≤  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 577 | 392 576 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 578 | 575 577 15 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 579 | 573 578 | syld3an1 | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 580 |  | simp1ll | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) )  →  𝜑 ) | 
						
							| 581 |  | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 582 | 5 581 | nfcxfr | ⊢ Ⅎ 𝑗 𝐵 | 
						
							| 583 | 582 227 | nffv | ⊢ Ⅎ 𝑗 ( 𝐵 ‘ 𝑖 ) | 
						
							| 584 | 583 | nfcri | ⊢ Ⅎ 𝑗 𝑡  ∈  ( 𝐵 ‘ 𝑖 ) | 
						
							| 585 | 2 375 584 | nf3an | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 586 |  | nfv | ⊢ Ⅎ 𝑗 ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 587 | 585 586 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) )  →  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 588 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 589 | 588 | eleq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑡  ∈  ( 𝐵 ‘ 𝑗 )  ↔  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 590 | 379 589 | 3anbi23d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  ↔  ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 591 | 393 | breq2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 592 | 590 591 | imbi12d | ⊢ ( 𝑗  =  𝑖  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑗 ) ‘ 𝑡 ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) )  →  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 593 | 587 592 18 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) )  →  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 594 | 580 593 | syld3an1 | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑖 ) )  →  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 595 | 1 531 546 4 5 547 548 567 568 569 570 571 572 579 594 | stoweidlem26 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑠 )  ∧  𝑠  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑠 ) ) | 
						
							| 596 | 518 595 | vtoclg | ⊢ ( 𝑡  ∈  𝑇  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 597 | 596 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 598 | 597 | pm2.43i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑙  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑙 )  ∖  ( 𝐷 ‘ ( 𝑙  −  1 ) ) ) ) )  →  ( ( 𝑙  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) | 
						
							| 599 | 508 598 | vtoclg | ⊢ ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 600 | 599 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 601 | 600 | pm2.43i | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) | 
						
							| 602 | 496 601 | jca | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 603 | 262 371 602 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) ) )  →  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 604 | 603 | ex | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 605 | 113 604 | eximd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  𝑡  ∈  ( ( 𝐷 ‘ 𝑗 )  ∖  ( 𝐷 ‘ ( 𝑗  −  1 ) ) ) )  →  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 606 | 261 605 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 607 |  | 3anass | ⊢ ( ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ↔  ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 608 | 607 | exbii | ⊢ ( ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ↔  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 609 | 606 608 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 610 |  | df-rex | ⊢ ( ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ↔  ∃ 𝑗 ( 𝑗  ∈  ( 𝐽 ‘ 𝑡 )  ∧  ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 611 | 609 610 | sylibr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 612 |  | nfcv | ⊢ Ⅎ 𝑗 ℝ | 
						
							| 613 | 103 612 | ssrexf | ⊢ ( ( 𝐽 ‘ 𝑡 )  ⊆  ℝ  →  ( ∃ 𝑗  ∈  ( 𝐽 ‘ 𝑡 ) ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  →  ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 614 | 30 611 613 | sylc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 615 | 614 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  →  ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 616 | 3 615 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |