| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
recgt0i.2 |
⊢ 0 < 𝐴 |
| 3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 4 |
1
|
recni |
⊢ 𝐴 ∈ ℂ |
| 5 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 6 |
1 2
|
gt0ne0ii |
⊢ 𝐴 ≠ 0 |
| 7 |
3 4 5 6
|
divne0i |
⊢ ( 1 / 𝐴 ) ≠ 0 |
| 8 |
7
|
nesymi |
⊢ ¬ 0 = ( 1 / 𝐴 ) |
| 9 |
|
0lt1 |
⊢ 0 < 1 |
| 10 |
|
0re |
⊢ 0 ∈ ℝ |
| 11 |
|
1re |
⊢ 1 ∈ ℝ |
| 12 |
10 11
|
ltnsymi |
⊢ ( 0 < 1 → ¬ 1 < 0 ) |
| 13 |
9 12
|
ax-mp |
⊢ ¬ 1 < 0 |
| 14 |
1 6
|
rereccli |
⊢ ( 1 / 𝐴 ) ∈ ℝ |
| 15 |
14
|
renegcli |
⊢ - ( 1 / 𝐴 ) ∈ ℝ |
| 16 |
15 1
|
mulgt0i |
⊢ ( ( 0 < - ( 1 / 𝐴 ) ∧ 0 < 𝐴 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) ) |
| 17 |
2 16
|
mpan2 |
⊢ ( 0 < - ( 1 / 𝐴 ) → 0 < ( - ( 1 / 𝐴 ) · 𝐴 ) ) |
| 18 |
14
|
recni |
⊢ ( 1 / 𝐴 ) ∈ ℂ |
| 19 |
18 4
|
mulneg1i |
⊢ ( - ( 1 / 𝐴 ) · 𝐴 ) = - ( ( 1 / 𝐴 ) · 𝐴 ) |
| 20 |
4 6
|
recidi |
⊢ ( 𝐴 · ( 1 / 𝐴 ) ) = 1 |
| 21 |
4 18 20
|
mulcomli |
⊢ ( ( 1 / 𝐴 ) · 𝐴 ) = 1 |
| 22 |
21
|
negeqi |
⊢ - ( ( 1 / 𝐴 ) · 𝐴 ) = - 1 |
| 23 |
19 22
|
eqtri |
⊢ ( - ( 1 / 𝐴 ) · 𝐴 ) = - 1 |
| 24 |
17 23
|
breqtrdi |
⊢ ( 0 < - ( 1 / 𝐴 ) → 0 < - 1 ) |
| 25 |
|
lt0neg1 |
⊢ ( ( 1 / 𝐴 ) ∈ ℝ → ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) ) |
| 26 |
14 25
|
ax-mp |
⊢ ( ( 1 / 𝐴 ) < 0 ↔ 0 < - ( 1 / 𝐴 ) ) |
| 27 |
|
lt0neg1 |
⊢ ( 1 ∈ ℝ → ( 1 < 0 ↔ 0 < - 1 ) ) |
| 28 |
11 27
|
ax-mp |
⊢ ( 1 < 0 ↔ 0 < - 1 ) |
| 29 |
24 26 28
|
3imtr4i |
⊢ ( ( 1 / 𝐴 ) < 0 → 1 < 0 ) |
| 30 |
13 29
|
mto |
⊢ ¬ ( 1 / 𝐴 ) < 0 |
| 31 |
8 30
|
pm3.2ni |
⊢ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) |
| 32 |
|
axlttri |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) ) |
| 33 |
10 14 32
|
mp2an |
⊢ ( 0 < ( 1 / 𝐴 ) ↔ ¬ ( 0 = ( 1 / 𝐴 ) ∨ ( 1 / 𝐴 ) < 0 ) ) |
| 34 |
31 33
|
mpbir |
⊢ 0 < ( 1 / 𝐴 ) |