| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem35.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem35.2 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 3 |  | stoweidlem35.3 | ⊢ Ⅎ ℎ 𝜑 | 
						
							| 4 |  | stoweidlem35.4 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 5 |  | stoweidlem35.5 | ⊢ 𝑊  =  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 6 |  | stoweidlem35.6 | ⊢ 𝐺  =  ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 7 |  | stoweidlem35.7 | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 8 |  | stoweidlem35.8 | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 9 |  | stoweidlem35.9 | ⊢ ( 𝜑  →  𝑋  ⊆  𝑊 ) | 
						
							| 10 |  | stoweidlem35.10 | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑋 ) | 
						
							| 11 |  | stoweidlem35.11 | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ≠  ∅ ) | 
						
							| 12 | 6 | rnmptfi | ⊢ ( 𝑋  ∈  Fin  →  ran  𝐺  ∈  Fin ) | 
						
							| 13 | 8 12 | syl | ⊢ ( 𝜑  →  ran  𝐺  ∈  Fin ) | 
						
							| 14 |  | fnchoice | ⊢ ( ran  𝐺  ∈  Fin  →  ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  ran  𝐺  ∈  Fin )  →  ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  →  𝑔  Fn  ran  𝐺 ) | 
						
							| 17 |  | nfmpt1 | ⊢ Ⅎ 𝑤 ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 18 | 6 17 | nfcxfr | ⊢ Ⅎ 𝑤 𝐺 | 
						
							| 19 | 18 | nfrn | ⊢ Ⅎ 𝑤 ran  𝐺 | 
						
							| 20 | 19 | nfcri | ⊢ Ⅎ 𝑤 𝑘  ∈  ran  𝐺 | 
						
							| 21 | 2 20 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑘  ∈  ran  𝐺 ) | 
						
							| 22 | 9 | sselda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝑤  ∈  𝑊 ) | 
						
							| 23 | 22 5 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝑤  ∈  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 24 |  | rabid | ⊢ ( 𝑤  ∈  { 𝑤  ∈  𝐽  ∣  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ↔  ( 𝑤  ∈  𝐽  ∧  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ( 𝑤  ∈  𝐽  ∧  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 26 | 25 | simprd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) | 
						
							| 27 |  | df-rex | ⊢ ( ∃ ℎ  ∈  𝑄 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  ↔  ∃ ℎ ( ℎ  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 28 | 26 27 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ∃ ℎ ( ℎ  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 29 |  | rabid | ⊢ ( ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ↔  ( ℎ  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 30 | 29 | exbii | ⊢ ( ∃ ℎ ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ↔  ∃ ℎ ( ℎ  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } ) ) | 
						
							| 31 | 28 30 | sylibr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ∃ ℎ ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ∃ ℎ ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ ℎ 𝑤  ∈  𝑋 | 
						
							| 34 | 3 33 | nfan | ⊢ Ⅎ ℎ ( 𝜑  ∧  𝑤  ∈  𝑋 ) | 
						
							| 35 |  | nfrab1 | ⊢ Ⅎ ℎ { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 36 | 35 | nfeq2 | ⊢ Ⅎ ℎ 𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 37 | 34 36 | nfan | ⊢ Ⅎ ℎ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 38 |  | eleq2 | ⊢ ( 𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  →  ( ℎ  ∈  𝑘  ↔  ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) ) | 
						
							| 39 | 38 | biimprd | ⊢ ( 𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  →  ( ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  →  ℎ  ∈  𝑘 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ( ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  →  ℎ  ∈  𝑘 ) ) | 
						
							| 41 | 37 40 | eximd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ( ∃ ℎ ℎ  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  →  ∃ ℎ ℎ  ∈  𝑘 ) ) | 
						
							| 42 | 32 41 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ∃ ℎ ℎ  ∈  𝑘 ) | 
						
							| 43 | 42 | adantllr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ∃ ℎ ℎ  ∈  𝑘 ) | 
						
							| 44 | 6 | elrnmpt | ⊢ ( 𝑘  ∈  ran  𝐺  →  ( 𝑘  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑋 𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) ) | 
						
							| 45 | 44 | ibi | ⊢ ( 𝑘  ∈  ran  𝐺  →  ∃ 𝑤  ∈  𝑋 𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝐺 )  →  ∃ 𝑤  ∈  𝑋 𝑘  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 47 | 21 43 46 | r19.29af | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝐺 )  →  ∃ ℎ ℎ  ∈  𝑘 ) | 
						
							| 48 |  | n0 | ⊢ ( 𝑘  ≠  ∅  ↔  ∃ ℎ ℎ  ∈  𝑘 ) | 
						
							| 49 | 47 48 | sylibr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝐺 )  →  𝑘  ≠  ∅ ) | 
						
							| 50 | 49 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  ∧  𝑘  ∈  ran  𝐺 )  →  𝑘  ≠  ∅ ) | 
						
							| 51 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  ∧  𝑘  ∈  ran  𝐺 )  →  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 52 |  | neeq1 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑙  ≠  ∅  ↔  𝑘  ≠  ∅ ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝑔 ‘ 𝑙 )  =  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 54 | 53 | eleq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ↔  ( 𝑔 ‘ 𝑘 )  ∈  𝑙 ) ) | 
						
							| 55 |  | eleq2 | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑔 ‘ 𝑘 )  ∈  𝑙  ↔  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) ) | 
						
							| 56 | 54 55 | bitrd | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ↔  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) ) | 
						
							| 57 | 52 56 | imbi12d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ↔  ( 𝑘  ≠  ∅  →  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) ) ) | 
						
							| 58 | 57 | rspccva | ⊢ ( ( ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑘  ∈  ran  𝐺 )  →  ( 𝑘  ≠  ∅  →  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) ) | 
						
							| 59 | 51 58 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  ∧  𝑘  ∈  ran  𝐺 )  →  ( 𝑘  ≠  ∅  →  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) ) | 
						
							| 60 | 50 59 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  ∧  𝑘  ∈  ran  𝐺 )  →  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) | 
						
							| 61 | 60 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  →  ∀ 𝑘  ∈  ran  𝐺 ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑘  =  𝑙  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑙 ) ) | 
						
							| 63 | 62 | eleq1d | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝑔 ‘ 𝑘 )  ∈  𝑘  ↔  ( 𝑔 ‘ 𝑙 )  ∈  𝑘 ) ) | 
						
							| 64 |  | eleq2 | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝑔 ‘ 𝑙 )  ∈  𝑘  ↔  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 65 | 63 64 | bitrd | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝑔 ‘ 𝑘 )  ∈  𝑘  ↔  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 66 | 65 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ran  𝐺 ( 𝑔 ‘ 𝑘 )  ∈  𝑘  ↔  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) | 
						
							| 67 | 61 66 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  →  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) | 
						
							| 68 | 16 67 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) )  →  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝜑  →  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) )  →  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  ran  𝐺  ∈  Fin )  →  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) )  →  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) ) | 
						
							| 71 | 70 | eximdv | ⊢ ( ( 𝜑  ∧  ran  𝐺  ∈  Fin )  →  ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑙  ≠  ∅  →  ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) )  →  ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) ) | 
						
							| 72 | 15 71 | mpd | ⊢ ( ( 𝜑  ∧  ran  𝐺  ∈  Fin )  →  ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 73 | 13 72 | mpdan | ⊢ ( 𝜑  →  ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 74 | 73 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  ℕ ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) ) | 
						
							| 75 |  | ssn0 | ⊢ ( ( ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑋  ∧  ( 𝑇  ∖  𝑈 )  ≠  ∅ )  →  ∪  𝑋  ≠  ∅ ) | 
						
							| 76 | 10 11 75 | syl2anc | ⊢ ( 𝜑  →  ∪  𝑋  ≠  ∅ ) | 
						
							| 77 | 76 | neneqd | ⊢ ( 𝜑  →  ¬  ∪  𝑋  =  ∅ ) | 
						
							| 78 |  | unieq | ⊢ ( 𝑋  =  ∅  →  ∪  𝑋  =  ∪  ∅ ) | 
						
							| 79 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 80 | 78 79 | eqtrdi | ⊢ ( 𝑋  =  ∅  →  ∪  𝑋  =  ∅ ) | 
						
							| 81 | 77 80 | nsyl | ⊢ ( 𝜑  →  ¬  𝑋  =  ∅ ) | 
						
							| 82 |  | dm0rn0 | ⊢ ( dom  𝐺  =  ∅  ↔  ran  𝐺  =  ∅ ) | 
						
							| 83 | 4 7 | rabexd | ⊢ ( 𝜑  →  𝑄  ∈  V ) | 
						
							| 84 |  | nfrab1 | ⊢ Ⅎ ℎ { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 85 | 4 84 | nfcxfr | ⊢ Ⅎ ℎ 𝑄 | 
						
							| 86 | 85 | rabexgf | ⊢ ( 𝑄  ∈  V  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 87 | 83 86 | syl | ⊢ ( 𝜑  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 89 | 2 88 6 | fmptdf | ⊢ ( 𝜑  →  𝐺 : 𝑋 ⟶ V ) | 
						
							| 90 |  | dffn2 | ⊢ ( 𝐺  Fn  𝑋  ↔  𝐺 : 𝑋 ⟶ V ) | 
						
							| 91 | 89 90 | sylibr | ⊢ ( 𝜑  →  𝐺  Fn  𝑋 ) | 
						
							| 92 | 91 | fndmd | ⊢ ( 𝜑  →  dom  𝐺  =  𝑋 ) | 
						
							| 93 | 92 | eqeq1d | ⊢ ( 𝜑  →  ( dom  𝐺  =  ∅  ↔  𝑋  =  ∅ ) ) | 
						
							| 94 | 82 93 | bitr3id | ⊢ ( 𝜑  →  ( ran  𝐺  =  ∅  ↔  𝑋  =  ∅ ) ) | 
						
							| 95 | 81 94 | mtbird | ⊢ ( 𝜑  →  ¬  ran  𝐺  =  ∅ ) | 
						
							| 96 |  | fz1f1o | ⊢ ( ran  𝐺  ∈  Fin  →  ( ran  𝐺  =  ∅  ∨  ( ( ♯ ‘ ran  𝐺 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 97 | 13 96 | syl | ⊢ ( 𝜑  →  ( ran  𝐺  =  ∅  ∨  ( ( ♯ ‘ ran  𝐺 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 98 | 97 | ord | ⊢ ( 𝜑  →  ( ¬  ran  𝐺  =  ∅  →  ( ( ♯ ‘ ran  𝐺 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 99 | 95 98 | mpd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ran  𝐺 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 100 |  | oveq2 | ⊢ ( 𝑚  =  ( ♯ ‘ ran  𝐺 )  →  ( 1 ... 𝑚 )  =  ( 1 ... ( ♯ ‘ ran  𝐺 ) ) ) | 
						
							| 101 | 100 | f1oeq2d | ⊢ ( 𝑚  =  ( ♯ ‘ ran  𝐺 )  →  ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺  ↔  𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 102 | 101 | exbidv | ⊢ ( 𝑚  =  ( ♯ ‘ ran  𝐺 )  →  ( ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺  ↔  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 103 | 102 | rspcev | ⊢ ( ( ( ♯ ‘ ran  𝐺 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran  𝐺 ) ) –1-1-onto→ ran  𝐺 )  →  ∃ 𝑚  ∈  ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) | 
						
							| 104 | 99 103 | syl | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) | 
						
							| 105 |  | r19.29 | ⊢ ( ( ∀ 𝑚  ∈  ℕ ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑚  ∈  ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  →  ∃ 𝑚  ∈  ℕ ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 106 | 74 104 105 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 107 |  | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 108 | 107 | biimpri | ⊢ ( ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  →  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 109 | 108 | a1i | ⊢ ( 𝜑  →  ( ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  →  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 110 | 109 | reximdv | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ ( ∃ 𝑔 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  →  ∃ 𝑚  ∈  ℕ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 111 | 106 110 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 112 |  | df-rex | ⊢ ( ∃ 𝑚  ∈  ℕ ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  ↔  ∃ 𝑚 ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 113 | 111 112 | sylib | ⊢ ( 𝜑  →  ∃ 𝑚 ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 114 |  | ax-5 | ⊢ ( 𝑚  ∈  ℕ  →  ∀ 𝑔 𝑚  ∈  ℕ ) | 
						
							| 115 |  | 19.29 | ⊢ ( ( ∀ 𝑔 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ( 𝑚  ∈  ℕ  ∧  ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 116 | 114 115 | sylan | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ( 𝑚  ∈  ℕ  ∧  ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 117 |  | ax-5 | ⊢ ( 𝑚  ∈  ℕ  →  ∀ 𝑓 𝑚  ∈  ℕ ) | 
						
							| 118 |  | 19.29 | ⊢ ( ( ∀ 𝑓 𝑚  ∈  ℕ  ∧  ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 119 | 117 118 | sylan | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 120 | 119 | eximi | ⊢ ( ∃ 𝑔 ( 𝑚  ∈  ℕ  ∧  ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 121 | 116 120 | syl | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 122 |  | df-3an | ⊢ ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 )  ↔  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 123 | 122 | anbi2i | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  ↔  ( 𝑚  ∈  ℕ  ∧  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 124 | 123 | 2exbii | ⊢ ( ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  ↔  ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 125 | 121 124 | sylibr | ⊢ ( ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 126 | 125 | a1i | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) ) | 
						
							| 127 | 126 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑚 ( 𝑚  ∈  ℕ  ∧  ∃ 𝑔 ∃ 𝑓 ( ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 )  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) ) | 
						
							| 128 | 113 127 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 129 | 83 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  𝑄  ∈  V ) | 
						
							| 130 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 131 |  | simprr1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  𝑔  Fn  ran  𝐺 ) | 
						
							| 132 |  | elex | ⊢ ( ran  𝐺  ∈  Fin  →  ran  𝐺  ∈  V ) | 
						
							| 133 | 13 132 | syl | ⊢ ( 𝜑  →  ran  𝐺  ∈  V ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  ran  𝐺  ∈  V ) | 
						
							| 135 |  | simprr2 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 ) | 
						
							| 136 | 56 | rspccva | ⊢ ( ( ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑘  ∈  ran  𝐺 )  →  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) | 
						
							| 137 | 135 136 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  ∧  𝑘  ∈  ran  𝐺 )  →  ( 𝑔 ‘ 𝑘 )  ∈  𝑘 ) | 
						
							| 138 |  | simprr3 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) | 
						
							| 139 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑋 ) | 
						
							| 140 |  | nfv | ⊢ Ⅎ 𝑡 𝑚  ∈  ℕ | 
						
							| 141 |  | nfcv | ⊢ Ⅎ 𝑡 𝑔 | 
						
							| 142 |  | nfcv | ⊢ Ⅎ 𝑡 𝑋 | 
						
							| 143 |  | nfrab1 | ⊢ Ⅎ 𝑡 { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } | 
						
							| 144 | 143 | nfeq2 | ⊢ Ⅎ 𝑡 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } | 
						
							| 145 |  | nfv | ⊢ Ⅎ 𝑡 ( ℎ ‘ 𝑍 )  =  0 | 
						
							| 146 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) | 
						
							| 147 | 145 146 | nfan | ⊢ Ⅎ 𝑡 ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 148 |  | nfcv | ⊢ Ⅎ 𝑡 𝐴 | 
						
							| 149 | 147 148 | nfrabw | ⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 150 | 4 149 | nfcxfr | ⊢ Ⅎ 𝑡 𝑄 | 
						
							| 151 | 144 150 | nfrabw | ⊢ Ⅎ 𝑡 { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } | 
						
							| 152 | 142 151 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 153 | 6 152 | nfcxfr | ⊢ Ⅎ 𝑡 𝐺 | 
						
							| 154 | 153 | nfrn | ⊢ Ⅎ 𝑡 ran  𝐺 | 
						
							| 155 | 141 154 | nffn | ⊢ Ⅎ 𝑡 𝑔  Fn  ran  𝐺 | 
						
							| 156 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 | 
						
							| 157 | 154 156 | nfralw | ⊢ Ⅎ 𝑡 ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 | 
						
							| 158 |  | nfcv | ⊢ Ⅎ 𝑡 𝑓 | 
						
							| 159 |  | nfcv | ⊢ Ⅎ 𝑡 ( 1 ... 𝑚 ) | 
						
							| 160 | 158 159 154 | nff1o | ⊢ Ⅎ 𝑡 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 | 
						
							| 161 | 155 157 160 | nf3an | ⊢ Ⅎ 𝑡 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) | 
						
							| 162 | 140 161 | nfan | ⊢ Ⅎ 𝑡 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 163 | 1 162 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 164 |  | nfv | ⊢ Ⅎ 𝑤 𝑚  ∈  ℕ | 
						
							| 165 |  | nfcv | ⊢ Ⅎ 𝑤 𝑔 | 
						
							| 166 | 165 19 | nffn | ⊢ Ⅎ 𝑤 𝑔  Fn  ran  𝐺 | 
						
							| 167 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 | 
						
							| 168 | 19 167 | nfralw | ⊢ Ⅎ 𝑤 ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙 | 
						
							| 169 |  | nfcv | ⊢ Ⅎ 𝑤 𝑓 | 
						
							| 170 |  | nfcv | ⊢ Ⅎ 𝑤 ( 1 ... 𝑚 ) | 
						
							| 171 | 169 170 19 | nff1o | ⊢ Ⅎ 𝑤 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 | 
						
							| 172 | 166 168 171 | nf3an | ⊢ Ⅎ 𝑤 ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) | 
						
							| 173 | 164 172 | nfan | ⊢ Ⅎ 𝑤 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) | 
						
							| 174 | 2 173 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) ) | 
						
							| 175 | 6 129 130 131 134 137 138 139 163 174 85 | stoweidlem27 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) ) )  →  ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 176 | 175 | ex | ⊢ ( 𝜑  →  ( ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 177 | 176 | 2eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 178 | 177 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ( 𝑚  ∈  ℕ  ∧  ( 𝑔  Fn  ran  𝐺  ∧  ∀ 𝑙  ∈  ran  𝐺 ( 𝑔 ‘ 𝑙 )  ∈  𝑙  ∧  𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran  𝐺 ) )  →  ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 179 | 128 178 | mpd | ⊢ ( 𝜑  →  ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 180 |  | id | ⊢ ( ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 181 | 180 | exlimivv | ⊢ ( ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 182 | 181 | eximi | ⊢ ( ∃ 𝑚 ∃ 𝑔 ∃ 𝑓 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑚 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 183 | 179 182 | syl | ⊢ ( 𝜑  →  ∃ 𝑚 ∃ 𝑞 ( 𝑚  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑚 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |