Metamath Proof Explorer


Theorem stoweidlem35

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Here ( qi ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem35.1 𝑡 𝜑
stoweidlem35.2 𝑤 𝜑
stoweidlem35.3 𝜑
stoweidlem35.4 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
stoweidlem35.5 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
stoweidlem35.6 𝐺 = ( 𝑤𝑋 ↦ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
stoweidlem35.7 ( 𝜑𝐴 ∈ V )
stoweidlem35.8 ( 𝜑𝑋 ∈ Fin )
stoweidlem35.9 ( 𝜑𝑋𝑊 )
stoweidlem35.10 ( 𝜑 → ( 𝑇𝑈 ) ⊆ 𝑋 )
stoweidlem35.11 ( 𝜑 → ( 𝑇𝑈 ) ≠ ∅ )
Assertion stoweidlem35 ( 𝜑 → ∃ 𝑚𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem35.1 𝑡 𝜑
2 stoweidlem35.2 𝑤 𝜑
3 stoweidlem35.3 𝜑
4 stoweidlem35.4 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
5 stoweidlem35.5 𝑊 = { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
6 stoweidlem35.6 𝐺 = ( 𝑤𝑋 ↦ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
7 stoweidlem35.7 ( 𝜑𝐴 ∈ V )
8 stoweidlem35.8 ( 𝜑𝑋 ∈ Fin )
9 stoweidlem35.9 ( 𝜑𝑋𝑊 )
10 stoweidlem35.10 ( 𝜑 → ( 𝑇𝑈 ) ⊆ 𝑋 )
11 stoweidlem35.11 ( 𝜑 → ( 𝑇𝑈 ) ≠ ∅ )
12 6 rnmptfi ( 𝑋 ∈ Fin → ran 𝐺 ∈ Fin )
13 8 12 syl ( 𝜑 → ran 𝐺 ∈ Fin )
14 fnchoice ( ran 𝐺 ∈ Fin → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) )
15 14 adantl ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) )
16 simprl ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) → 𝑔 Fn ran 𝐺 )
17 nfmpt1 𝑤 ( 𝑤𝑋 ↦ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
18 6 17 nfcxfr 𝑤 𝐺
19 18 nfrn 𝑤 ran 𝐺
20 19 nfcri 𝑤 𝑘 ∈ ran 𝐺
21 2 20 nfan 𝑤 ( 𝜑𝑘 ∈ ran 𝐺 )
22 9 sselda ( ( 𝜑𝑤𝑋 ) → 𝑤𝑊 )
23 22 5 eleqtrdi ( ( 𝜑𝑤𝑋 ) → 𝑤 ∈ { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
24 rabid ( 𝑤 ∈ { 𝑤𝐽 ∣ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ↔ ( 𝑤𝐽 ∧ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
25 23 24 sylib ( ( 𝜑𝑤𝑋 ) → ( 𝑤𝐽 ∧ ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
26 25 simprd ( ( 𝜑𝑤𝑋 ) → ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } )
27 df-rex ( ∃ 𝑄 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ↔ ∃ ( 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
28 26 27 sylib ( ( 𝜑𝑤𝑋 ) → ∃ ( 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
29 rabid ( ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ↔ ( 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
30 29 exbii ( ∃ ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ↔ ∃ ( 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } ) )
31 28 30 sylibr ( ( 𝜑𝑤𝑋 ) → ∃ ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
32 31 adantr ( ( ( 𝜑𝑤𝑋 ) ∧ 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) → ∃ ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
33 nfv 𝑤𝑋
34 3 33 nfan ( 𝜑𝑤𝑋 )
35 nfrab1 { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
36 35 nfeq2 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
37 34 36 nfan ( ( 𝜑𝑤𝑋 ) ∧ 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
38 eleq2 ( 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } → ( 𝑘 ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) )
39 38 biimprd ( 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } → ( ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } → 𝑘 ) )
40 39 adantl ( ( ( 𝜑𝑤𝑋 ) ∧ 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) → ( ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } → 𝑘 ) )
41 37 40 eximd ( ( ( 𝜑𝑤𝑋 ) ∧ 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) → ( ∃ ∈ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } → ∃ 𝑘 ) )
42 32 41 mpd ( ( ( 𝜑𝑤𝑋 ) ∧ 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) → ∃ 𝑘 )
43 42 adantllr ( ( ( ( 𝜑𝑘 ∈ ran 𝐺 ) ∧ 𝑤𝑋 ) ∧ 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) → ∃ 𝑘 )
44 6 elrnmpt ( 𝑘 ∈ ran 𝐺 → ( 𝑘 ∈ ran 𝐺 ↔ ∃ 𝑤𝑋 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ) )
45 44 ibi ( 𝑘 ∈ ran 𝐺 → ∃ 𝑤𝑋 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
46 45 adantl ( ( 𝜑𝑘 ∈ ran 𝐺 ) → ∃ 𝑤𝑋 𝑘 = { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
47 21 43 46 r19.29af ( ( 𝜑𝑘 ∈ ran 𝐺 ) → ∃ 𝑘 )
48 n0 ( 𝑘 ≠ ∅ ↔ ∃ 𝑘 )
49 47 48 sylibr ( ( 𝜑𝑘 ∈ ran 𝐺 ) → 𝑘 ≠ ∅ )
50 49 adantlr ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → 𝑘 ≠ ∅ )
51 simplrr ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) )
52 neeq1 ( 𝑙 = 𝑘 → ( 𝑙 ≠ ∅ ↔ 𝑘 ≠ ∅ ) )
53 fveq2 ( 𝑙 = 𝑘 → ( 𝑔𝑙 ) = ( 𝑔𝑘 ) )
54 53 eleq1d ( 𝑙 = 𝑘 → ( ( 𝑔𝑙 ) ∈ 𝑙 ↔ ( 𝑔𝑘 ) ∈ 𝑙 ) )
55 eleq2 ( 𝑙 = 𝑘 → ( ( 𝑔𝑘 ) ∈ 𝑙 ↔ ( 𝑔𝑘 ) ∈ 𝑘 ) )
56 54 55 bitrd ( 𝑙 = 𝑘 → ( ( 𝑔𝑙 ) ∈ 𝑙 ↔ ( 𝑔𝑘 ) ∈ 𝑘 ) )
57 52 56 imbi12d ( 𝑙 = 𝑘 → ( ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ↔ ( 𝑘 ≠ ∅ → ( 𝑔𝑘 ) ∈ 𝑘 ) ) )
58 57 rspccva ( ( ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑘 ≠ ∅ → ( 𝑔𝑘 ) ∈ 𝑘 ) )
59 51 58 sylancom ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑘 ≠ ∅ → ( 𝑔𝑘 ) ∈ 𝑘 ) )
60 50 59 mpd ( ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑔𝑘 ) ∈ 𝑘 )
61 60 ralrimiva ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) → ∀ 𝑘 ∈ ran 𝐺 ( 𝑔𝑘 ) ∈ 𝑘 )
62 fveq2 ( 𝑘 = 𝑙 → ( 𝑔𝑘 ) = ( 𝑔𝑙 ) )
63 62 eleq1d ( 𝑘 = 𝑙 → ( ( 𝑔𝑘 ) ∈ 𝑘 ↔ ( 𝑔𝑙 ) ∈ 𝑘 ) )
64 eleq2 ( 𝑘 = 𝑙 → ( ( 𝑔𝑙 ) ∈ 𝑘 ↔ ( 𝑔𝑙 ) ∈ 𝑙 ) )
65 63 64 bitrd ( 𝑘 = 𝑙 → ( ( 𝑔𝑘 ) ∈ 𝑘 ↔ ( 𝑔𝑙 ) ∈ 𝑙 ) )
66 65 cbvralvw ( ∀ 𝑘 ∈ ran 𝐺 ( 𝑔𝑘 ) ∈ 𝑘 ↔ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 )
67 61 66 sylib ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) → ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 )
68 16 67 jca ( ( 𝜑 ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) ) → ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) )
69 68 ex ( 𝜑 → ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) → ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ) )
70 69 adantr ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) → ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ) )
71 70 eximdv ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑙 ≠ ∅ → ( 𝑔𝑙 ) ∈ 𝑙 ) ) → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ) )
72 15 71 mpd ( ( 𝜑 ∧ ran 𝐺 ∈ Fin ) → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) )
73 13 72 mpdan ( 𝜑 → ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) )
74 73 ralrimivw ( 𝜑 → ∀ 𝑚 ∈ ℕ ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) )
75 ssn0 ( ( ( 𝑇𝑈 ) ⊆ 𝑋 ∧ ( 𝑇𝑈 ) ≠ ∅ ) → 𝑋 ≠ ∅ )
76 10 11 75 syl2anc ( 𝜑 𝑋 ≠ ∅ )
77 76 neneqd ( 𝜑 → ¬ 𝑋 = ∅ )
78 unieq ( 𝑋 = ∅ → 𝑋 = ∅ )
79 uni0 ∅ = ∅
80 78 79 eqtrdi ( 𝑋 = ∅ → 𝑋 = ∅ )
81 77 80 nsyl ( 𝜑 → ¬ 𝑋 = ∅ )
82 dm0rn0 ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ )
83 4 7 rabexd ( 𝜑𝑄 ∈ V )
84 nfrab1 { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
85 4 84 nfcxfr 𝑄
86 85 rabexgf ( 𝑄 ∈ V → { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ∈ V )
87 83 86 syl ( 𝜑 → { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ∈ V )
88 87 adantr ( ( 𝜑𝑤𝑋 ) → { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } ∈ V )
89 2 88 6 fmptdf ( 𝜑𝐺 : 𝑋 ⟶ V )
90 dffn2 ( 𝐺 Fn 𝑋𝐺 : 𝑋 ⟶ V )
91 89 90 sylibr ( 𝜑𝐺 Fn 𝑋 )
92 91 fndmd ( 𝜑 → dom 𝐺 = 𝑋 )
93 92 eqeq1d ( 𝜑 → ( dom 𝐺 = ∅ ↔ 𝑋 = ∅ ) )
94 82 93 bitr3id ( 𝜑 → ( ran 𝐺 = ∅ ↔ 𝑋 = ∅ ) )
95 81 94 mtbird ( 𝜑 → ¬ ran 𝐺 = ∅ )
96 fz1f1o ( ran 𝐺 ∈ Fin → ( ran 𝐺 = ∅ ∨ ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) )
97 13 96 syl ( 𝜑 → ( ran 𝐺 = ∅ ∨ ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) )
98 97 ord ( 𝜑 → ( ¬ ran 𝐺 = ∅ → ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) ) )
99 95 98 mpd ( 𝜑 → ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) )
100 oveq2 ( 𝑚 = ( ♯ ‘ ran 𝐺 ) → ( 1 ... 𝑚 ) = ( 1 ... ( ♯ ‘ ran 𝐺 ) ) )
101 100 f1oeq2d ( 𝑚 = ( ♯ ‘ ran 𝐺 ) → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) )
102 101 exbidv ( 𝑚 = ( ♯ ‘ ran 𝐺 ) → ( ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) )
103 102 rspcev ( ( ( ♯ ‘ ran 𝐺 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐺 ) ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 )
104 99 103 syl ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 )
105 r19.29 ( ( ∀ 𝑚 ∈ ℕ ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑚 ∈ ℕ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
106 74 104 105 syl2anc ( 𝜑 → ∃ 𝑚 ∈ ℕ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
107 exdistrv ( ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
108 107 biimpri ( ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
109 108 a1i ( 𝜑 → ( ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
110 109 reximdv ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ( ∃ 𝑔 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ ∃ 𝑓 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) → ∃ 𝑚 ∈ ℕ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
111 106 110 mpd ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
112 df-rex ( ∃ 𝑚 ∈ ℕ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ↔ ∃ 𝑚 ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
113 111 112 sylib ( 𝜑 → ∃ 𝑚 ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
114 ax-5 ( 𝑚 ∈ ℕ → ∀ 𝑔 𝑚 ∈ ℕ )
115 19.29 ( ( ∀ 𝑔 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
116 114 115 sylan ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔 ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
117 ax-5 ( 𝑚 ∈ ℕ → ∀ 𝑓 𝑚 ∈ ℕ )
118 19.29 ( ( ∀ 𝑓 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
119 117 118 sylan ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
120 119 eximi ( ∃ 𝑔 ( 𝑚 ∈ ℕ ∧ ∃ 𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
121 116 120 syl ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
122 df-3an ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ↔ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
123 122 anbi2i ( ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ↔ ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
124 123 2exbii ( ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ↔ ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
125 121 124 sylibr ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
126 125 a1i ( 𝜑 → ( ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) )
127 126 eximdv ( 𝜑 → ( ∃ 𝑚 ( 𝑚 ∈ ℕ ∧ ∃ 𝑔𝑓 ( ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑚𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) )
128 113 127 mpd ( 𝜑 → ∃ 𝑚𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
129 83 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑄 ∈ V )
130 simprl ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑚 ∈ ℕ )
131 simprr1 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑔 Fn ran 𝐺 )
132 elex ( ran 𝐺 ∈ Fin → ran 𝐺 ∈ V )
133 13 132 syl ( 𝜑 → ran 𝐺 ∈ V )
134 133 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ran 𝐺 ∈ V )
135 simprr2 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙 )
136 56 rspccva ( ( ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑘 ∈ ran 𝐺 ) → ( 𝑔𝑘 ) ∈ 𝑘 )
137 135 136 sylan ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) ∧ 𝑘 ∈ ran 𝐺 ) → ( 𝑔𝑘 ) ∈ 𝑘 )
138 simprr3 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 )
139 10 adantr ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ( 𝑇𝑈 ) ⊆ 𝑋 )
140 nfv 𝑡 𝑚 ∈ ℕ
141 nfcv 𝑡 𝑔
142 nfcv 𝑡 𝑋
143 nfrab1 𝑡 { 𝑡𝑇 ∣ 0 < ( 𝑡 ) }
144 143 nfeq2 𝑡 𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) }
145 nfv 𝑡 ( 𝑍 ) = 0
146 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 )
147 145 146 nfan 𝑡 ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) )
148 nfcv 𝑡 𝐴
149 147 148 nfrabw 𝑡 { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
150 4 149 nfcxfr 𝑡 𝑄
151 144 150 nfrabw 𝑡 { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } }
152 142 151 nfmpt 𝑡 ( 𝑤𝑋 ↦ { 𝑄𝑤 = { 𝑡𝑇 ∣ 0 < ( 𝑡 ) } } )
153 6 152 nfcxfr 𝑡 𝐺
154 153 nfrn 𝑡 ran 𝐺
155 141 154 nffn 𝑡 𝑔 Fn ran 𝐺
156 nfv 𝑡 ( 𝑔𝑙 ) ∈ 𝑙
157 154 156 nfralw 𝑡𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙
158 nfcv 𝑡 𝑓
159 nfcv 𝑡 ( 1 ... 𝑚 )
160 158 159 154 nff1o 𝑡 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺
161 155 157 160 nf3an 𝑡 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 )
162 140 161 nfan 𝑡 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
163 1 162 nfan 𝑡 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
164 nfv 𝑤 𝑚 ∈ ℕ
165 nfcv 𝑤 𝑔
166 165 19 nffn 𝑤 𝑔 Fn ran 𝐺
167 nfv 𝑤 ( 𝑔𝑙 ) ∈ 𝑙
168 19 167 nfralw 𝑤𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙
169 nfcv 𝑤 𝑓
170 nfcv 𝑤 ( 1 ... 𝑚 )
171 169 170 19 nff1o 𝑤 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺
172 166 168 171 nf3an 𝑤 ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 )
173 164 172 nfan 𝑤 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) )
174 2 173 nfan 𝑤 ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) )
175 6 129 130 131 134 137 138 139 163 174 85 stoweidlem27 ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
176 175 ex ( 𝜑 → ( ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) )
177 176 2eximdv ( 𝜑 → ( ∃ 𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑔𝑓𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) )
178 177 eximdv ( 𝜑 → ( ∃ 𝑚𝑔𝑓 ( 𝑚 ∈ ℕ ∧ ( 𝑔 Fn ran 𝐺 ∧ ∀ 𝑙 ∈ ran 𝐺 ( 𝑔𝑙 ) ∈ 𝑙𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ ran 𝐺 ) ) → ∃ 𝑚𝑔𝑓𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) ) )
179 128 178 mpd ( 𝜑 → ∃ 𝑚𝑔𝑓𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
180 id ( ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
181 180 exlimivv ( ∃ 𝑔𝑓𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
182 181 eximi ( ∃ 𝑚𝑔𝑓𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑚𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )
183 179 182 syl ( 𝜑 → ∃ 𝑚𝑞 ( 𝑚 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑚 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑚 ) 0 < ( ( 𝑞𝑖 ) ‘ 𝑡 ) ) ) )