| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem35.1 |
|- F/ t ph |
| 2 |
|
stoweidlem35.2 |
|- F/ w ph |
| 3 |
|
stoweidlem35.3 |
|- F/ h ph |
| 4 |
|
stoweidlem35.4 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
| 5 |
|
stoweidlem35.5 |
|- W = { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
| 6 |
|
stoweidlem35.6 |
|- G = ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 7 |
|
stoweidlem35.7 |
|- ( ph -> A e. _V ) |
| 8 |
|
stoweidlem35.8 |
|- ( ph -> X e. Fin ) |
| 9 |
|
stoweidlem35.9 |
|- ( ph -> X C_ W ) |
| 10 |
|
stoweidlem35.10 |
|- ( ph -> ( T \ U ) C_ U. X ) |
| 11 |
|
stoweidlem35.11 |
|- ( ph -> ( T \ U ) =/= (/) ) |
| 12 |
6
|
rnmptfi |
|- ( X e. Fin -> ran G e. Fin ) |
| 13 |
8 12
|
syl |
|- ( ph -> ran G e. Fin ) |
| 14 |
|
fnchoice |
|- ( ran G e. Fin -> E. g ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ ran G e. Fin ) -> E. g ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) |
| 16 |
|
simprl |
|- ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) -> g Fn ran G ) |
| 17 |
|
nfmpt1 |
|- F/_ w ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 18 |
6 17
|
nfcxfr |
|- F/_ w G |
| 19 |
18
|
nfrn |
|- F/_ w ran G |
| 20 |
19
|
nfcri |
|- F/ w k e. ran G |
| 21 |
2 20
|
nfan |
|- F/ w ( ph /\ k e. ran G ) |
| 22 |
9
|
sselda |
|- ( ( ph /\ w e. X ) -> w e. W ) |
| 23 |
22 5
|
eleqtrdi |
|- ( ( ph /\ w e. X ) -> w e. { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } ) |
| 24 |
|
rabid |
|- ( w e. { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } <-> ( w e. J /\ E. h e. Q w = { t e. T | 0 < ( h ` t ) } ) ) |
| 25 |
23 24
|
sylib |
|- ( ( ph /\ w e. X ) -> ( w e. J /\ E. h e. Q w = { t e. T | 0 < ( h ` t ) } ) ) |
| 26 |
25
|
simprd |
|- ( ( ph /\ w e. X ) -> E. h e. Q w = { t e. T | 0 < ( h ` t ) } ) |
| 27 |
|
df-rex |
|- ( E. h e. Q w = { t e. T | 0 < ( h ` t ) } <-> E. h ( h e. Q /\ w = { t e. T | 0 < ( h ` t ) } ) ) |
| 28 |
26 27
|
sylib |
|- ( ( ph /\ w e. X ) -> E. h ( h e. Q /\ w = { t e. T | 0 < ( h ` t ) } ) ) |
| 29 |
|
rabid |
|- ( h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } <-> ( h e. Q /\ w = { t e. T | 0 < ( h ` t ) } ) ) |
| 30 |
29
|
exbii |
|- ( E. h h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } <-> E. h ( h e. Q /\ w = { t e. T | 0 < ( h ` t ) } ) ) |
| 31 |
28 30
|
sylibr |
|- ( ( ph /\ w e. X ) -> E. h h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 32 |
31
|
adantr |
|- ( ( ( ph /\ w e. X ) /\ k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> E. h h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 33 |
|
nfv |
|- F/ h w e. X |
| 34 |
3 33
|
nfan |
|- F/ h ( ph /\ w e. X ) |
| 35 |
|
nfrab1 |
|- F/_ h { h e. Q | w = { t e. T | 0 < ( h ` t ) } } |
| 36 |
35
|
nfeq2 |
|- F/ h k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } |
| 37 |
34 36
|
nfan |
|- F/ h ( ( ph /\ w e. X ) /\ k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 38 |
|
eleq2 |
|- ( k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } -> ( h e. k <-> h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) ) |
| 39 |
38
|
biimprd |
|- ( k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } -> ( h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } -> h e. k ) ) |
| 40 |
39
|
adantl |
|- ( ( ( ph /\ w e. X ) /\ k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> ( h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } -> h e. k ) ) |
| 41 |
37 40
|
eximd |
|- ( ( ( ph /\ w e. X ) /\ k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> ( E. h h e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } -> E. h h e. k ) ) |
| 42 |
32 41
|
mpd |
|- ( ( ( ph /\ w e. X ) /\ k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> E. h h e. k ) |
| 43 |
42
|
adantllr |
|- ( ( ( ( ph /\ k e. ran G ) /\ w e. X ) /\ k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> E. h h e. k ) |
| 44 |
6
|
elrnmpt |
|- ( k e. ran G -> ( k e. ran G <-> E. w e. X k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) ) |
| 45 |
44
|
ibi |
|- ( k e. ran G -> E. w e. X k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ k e. ran G ) -> E. w e. X k = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 47 |
21 43 46
|
r19.29af |
|- ( ( ph /\ k e. ran G ) -> E. h h e. k ) |
| 48 |
|
n0 |
|- ( k =/= (/) <-> E. h h e. k ) |
| 49 |
47 48
|
sylibr |
|- ( ( ph /\ k e. ran G ) -> k =/= (/) ) |
| 50 |
49
|
adantlr |
|- ( ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) /\ k e. ran G ) -> k =/= (/) ) |
| 51 |
|
simplrr |
|- ( ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) /\ k e. ran G ) -> A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) |
| 52 |
|
neeq1 |
|- ( l = k -> ( l =/= (/) <-> k =/= (/) ) ) |
| 53 |
|
fveq2 |
|- ( l = k -> ( g ` l ) = ( g ` k ) ) |
| 54 |
53
|
eleq1d |
|- ( l = k -> ( ( g ` l ) e. l <-> ( g ` k ) e. l ) ) |
| 55 |
|
eleq2 |
|- ( l = k -> ( ( g ` k ) e. l <-> ( g ` k ) e. k ) ) |
| 56 |
54 55
|
bitrd |
|- ( l = k -> ( ( g ` l ) e. l <-> ( g ` k ) e. k ) ) |
| 57 |
52 56
|
imbi12d |
|- ( l = k -> ( ( l =/= (/) -> ( g ` l ) e. l ) <-> ( k =/= (/) -> ( g ` k ) e. k ) ) ) |
| 58 |
57
|
rspccva |
|- ( ( A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) /\ k e. ran G ) -> ( k =/= (/) -> ( g ` k ) e. k ) ) |
| 59 |
51 58
|
sylancom |
|- ( ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) /\ k e. ran G ) -> ( k =/= (/) -> ( g ` k ) e. k ) ) |
| 60 |
50 59
|
mpd |
|- ( ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) /\ k e. ran G ) -> ( g ` k ) e. k ) |
| 61 |
60
|
ralrimiva |
|- ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) -> A. k e. ran G ( g ` k ) e. k ) |
| 62 |
|
fveq2 |
|- ( k = l -> ( g ` k ) = ( g ` l ) ) |
| 63 |
62
|
eleq1d |
|- ( k = l -> ( ( g ` k ) e. k <-> ( g ` l ) e. k ) ) |
| 64 |
|
eleq2 |
|- ( k = l -> ( ( g ` l ) e. k <-> ( g ` l ) e. l ) ) |
| 65 |
63 64
|
bitrd |
|- ( k = l -> ( ( g ` k ) e. k <-> ( g ` l ) e. l ) ) |
| 66 |
65
|
cbvralvw |
|- ( A. k e. ran G ( g ` k ) e. k <-> A. l e. ran G ( g ` l ) e. l ) |
| 67 |
61 66
|
sylib |
|- ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) -> A. l e. ran G ( g ` l ) e. l ) |
| 68 |
16 67
|
jca |
|- ( ( ph /\ ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) ) -> ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) |
| 69 |
68
|
ex |
|- ( ph -> ( ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) -> ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ ran G e. Fin ) -> ( ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) -> ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) ) |
| 71 |
70
|
eximdv |
|- ( ( ph /\ ran G e. Fin ) -> ( E. g ( g Fn ran G /\ A. l e. ran G ( l =/= (/) -> ( g ` l ) e. l ) ) -> E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) ) |
| 72 |
15 71
|
mpd |
|- ( ( ph /\ ran G e. Fin ) -> E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) |
| 73 |
13 72
|
mpdan |
|- ( ph -> E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) |
| 74 |
73
|
ralrimivw |
|- ( ph -> A. m e. NN E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) ) |
| 75 |
|
ssn0 |
|- ( ( ( T \ U ) C_ U. X /\ ( T \ U ) =/= (/) ) -> U. X =/= (/) ) |
| 76 |
10 11 75
|
syl2anc |
|- ( ph -> U. X =/= (/) ) |
| 77 |
76
|
neneqd |
|- ( ph -> -. U. X = (/) ) |
| 78 |
|
unieq |
|- ( X = (/) -> U. X = U. (/) ) |
| 79 |
|
uni0 |
|- U. (/) = (/) |
| 80 |
78 79
|
eqtrdi |
|- ( X = (/) -> U. X = (/) ) |
| 81 |
77 80
|
nsyl |
|- ( ph -> -. X = (/) ) |
| 82 |
|
dm0rn0 |
|- ( dom G = (/) <-> ran G = (/) ) |
| 83 |
4 7
|
rabexd |
|- ( ph -> Q e. _V ) |
| 84 |
|
nfrab1 |
|- F/_ h { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
| 85 |
4 84
|
nfcxfr |
|- F/_ h Q |
| 86 |
85
|
rabexgf |
|- ( Q e. _V -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
| 87 |
83 86
|
syl |
|- ( ph -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ w e. X ) -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
| 89 |
2 88 6
|
fmptdf |
|- ( ph -> G : X --> _V ) |
| 90 |
|
dffn2 |
|- ( G Fn X <-> G : X --> _V ) |
| 91 |
89 90
|
sylibr |
|- ( ph -> G Fn X ) |
| 92 |
91
|
fndmd |
|- ( ph -> dom G = X ) |
| 93 |
92
|
eqeq1d |
|- ( ph -> ( dom G = (/) <-> X = (/) ) ) |
| 94 |
82 93
|
bitr3id |
|- ( ph -> ( ran G = (/) <-> X = (/) ) ) |
| 95 |
81 94
|
mtbird |
|- ( ph -> -. ran G = (/) ) |
| 96 |
|
fz1f1o |
|- ( ran G e. Fin -> ( ran G = (/) \/ ( ( # ` ran G ) e. NN /\ E. f f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) ) ) |
| 97 |
13 96
|
syl |
|- ( ph -> ( ran G = (/) \/ ( ( # ` ran G ) e. NN /\ E. f f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) ) ) |
| 98 |
97
|
ord |
|- ( ph -> ( -. ran G = (/) -> ( ( # ` ran G ) e. NN /\ E. f f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) ) ) |
| 99 |
95 98
|
mpd |
|- ( ph -> ( ( # ` ran G ) e. NN /\ E. f f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) ) |
| 100 |
|
oveq2 |
|- ( m = ( # ` ran G ) -> ( 1 ... m ) = ( 1 ... ( # ` ran G ) ) ) |
| 101 |
100
|
f1oeq2d |
|- ( m = ( # ` ran G ) -> ( f : ( 1 ... m ) -1-1-onto-> ran G <-> f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) ) |
| 102 |
101
|
exbidv |
|- ( m = ( # ` ran G ) -> ( E. f f : ( 1 ... m ) -1-1-onto-> ran G <-> E. f f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) ) |
| 103 |
102
|
rspcev |
|- ( ( ( # ` ran G ) e. NN /\ E. f f : ( 1 ... ( # ` ran G ) ) -1-1-onto-> ran G ) -> E. m e. NN E. f f : ( 1 ... m ) -1-1-onto-> ran G ) |
| 104 |
99 103
|
syl |
|- ( ph -> E. m e. NN E. f f : ( 1 ... m ) -1-1-onto-> ran G ) |
| 105 |
|
r19.29 |
|- ( ( A. m e. NN E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. m e. NN E. f f : ( 1 ... m ) -1-1-onto-> ran G ) -> E. m e. NN ( E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. f f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 106 |
74 104 105
|
syl2anc |
|- ( ph -> E. m e. NN ( E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. f f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 107 |
|
exdistrv |
|- ( E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) <-> ( E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. f f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 108 |
107
|
biimpri |
|- ( ( E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. f f : ( 1 ... m ) -1-1-onto-> ran G ) -> E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 109 |
108
|
a1i |
|- ( ph -> ( ( E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. f f : ( 1 ... m ) -1-1-onto-> ran G ) -> E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 110 |
109
|
reximdv |
|- ( ph -> ( E. m e. NN ( E. g ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ E. f f : ( 1 ... m ) -1-1-onto-> ran G ) -> E. m e. NN E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 111 |
106 110
|
mpd |
|- ( ph -> E. m e. NN E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 112 |
|
df-rex |
|- ( E. m e. NN E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) <-> E. m ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 113 |
111 112
|
sylib |
|- ( ph -> E. m ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 114 |
|
ax-5 |
|- ( m e. NN -> A. g m e. NN ) |
| 115 |
|
19.29 |
|- ( ( A. g m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g ( m e. NN /\ E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 116 |
114 115
|
sylan |
|- ( ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g ( m e. NN /\ E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 117 |
|
ax-5 |
|- ( m e. NN -> A. f m e. NN ) |
| 118 |
|
19.29 |
|- ( ( A. f m e. NN /\ E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. f ( m e. NN /\ ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 119 |
117 118
|
sylan |
|- ( ( m e. NN /\ E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. f ( m e. NN /\ ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 120 |
119
|
eximi |
|- ( E. g ( m e. NN /\ E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g E. f ( m e. NN /\ ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 121 |
116 120
|
syl |
|- ( ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g E. f ( m e. NN /\ ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 122 |
|
df-3an |
|- ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) <-> ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 123 |
122
|
anbi2i |
|- ( ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) <-> ( m e. NN /\ ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 124 |
123
|
2exbii |
|- ( E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) <-> E. g E. f ( m e. NN /\ ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 125 |
121 124
|
sylibr |
|- ( ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 126 |
125
|
a1i |
|- ( ph -> ( ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) ) |
| 127 |
126
|
eximdv |
|- ( ph -> ( E. m ( m e. NN /\ E. g E. f ( ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l ) /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. m E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) ) |
| 128 |
113 127
|
mpd |
|- ( ph -> E. m E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 129 |
83
|
adantr |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> Q e. _V ) |
| 130 |
|
simprl |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> m e. NN ) |
| 131 |
|
simprr1 |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> g Fn ran G ) |
| 132 |
|
elex |
|- ( ran G e. Fin -> ran G e. _V ) |
| 133 |
13 132
|
syl |
|- ( ph -> ran G e. _V ) |
| 134 |
133
|
adantr |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> ran G e. _V ) |
| 135 |
|
simprr2 |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> A. l e. ran G ( g ` l ) e. l ) |
| 136 |
56
|
rspccva |
|- ( ( A. l e. ran G ( g ` l ) e. l /\ k e. ran G ) -> ( g ` k ) e. k ) |
| 137 |
135 136
|
sylan |
|- ( ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) /\ k e. ran G ) -> ( g ` k ) e. k ) |
| 138 |
|
simprr3 |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> f : ( 1 ... m ) -1-1-onto-> ran G ) |
| 139 |
10
|
adantr |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> ( T \ U ) C_ U. X ) |
| 140 |
|
nfv |
|- F/ t m e. NN |
| 141 |
|
nfcv |
|- F/_ t g |
| 142 |
|
nfcv |
|- F/_ t X |
| 143 |
|
nfrab1 |
|- F/_ t { t e. T | 0 < ( h ` t ) } |
| 144 |
143
|
nfeq2 |
|- F/ t w = { t e. T | 0 < ( h ` t ) } |
| 145 |
|
nfv |
|- F/ t ( h ` Z ) = 0 |
| 146 |
|
nfra1 |
|- F/ t A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) |
| 147 |
145 146
|
nfan |
|- F/ t ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) |
| 148 |
|
nfcv |
|- F/_ t A |
| 149 |
147 148
|
nfrabw |
|- F/_ t { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
| 150 |
4 149
|
nfcxfr |
|- F/_ t Q |
| 151 |
144 150
|
nfrabw |
|- F/_ t { h e. Q | w = { t e. T | 0 < ( h ` t ) } } |
| 152 |
142 151
|
nfmpt |
|- F/_ t ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 153 |
6 152
|
nfcxfr |
|- F/_ t G |
| 154 |
153
|
nfrn |
|- F/_ t ran G |
| 155 |
141 154
|
nffn |
|- F/ t g Fn ran G |
| 156 |
|
nfv |
|- F/ t ( g ` l ) e. l |
| 157 |
154 156
|
nfralw |
|- F/ t A. l e. ran G ( g ` l ) e. l |
| 158 |
|
nfcv |
|- F/_ t f |
| 159 |
|
nfcv |
|- F/_ t ( 1 ... m ) |
| 160 |
158 159 154
|
nff1o |
|- F/ t f : ( 1 ... m ) -1-1-onto-> ran G |
| 161 |
155 157 160
|
nf3an |
|- F/ t ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) |
| 162 |
140 161
|
nfan |
|- F/ t ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 163 |
1 162
|
nfan |
|- F/ t ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 164 |
|
nfv |
|- F/ w m e. NN |
| 165 |
|
nfcv |
|- F/_ w g |
| 166 |
165 19
|
nffn |
|- F/ w g Fn ran G |
| 167 |
|
nfv |
|- F/ w ( g ` l ) e. l |
| 168 |
19 167
|
nfralw |
|- F/ w A. l e. ran G ( g ` l ) e. l |
| 169 |
|
nfcv |
|- F/_ w f |
| 170 |
|
nfcv |
|- F/_ w ( 1 ... m ) |
| 171 |
169 170 19
|
nff1o |
|- F/ w f : ( 1 ... m ) -1-1-onto-> ran G |
| 172 |
166 168 171
|
nf3an |
|- F/ w ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) |
| 173 |
164 172
|
nfan |
|- F/ w ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) |
| 174 |
2 173
|
nfan |
|- F/ w ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) |
| 175 |
6 129 130 131 134 137 138 139 163 174 85
|
stoweidlem27 |
|- ( ( ph /\ ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) ) -> E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 176 |
175
|
ex |
|- ( ph -> ( ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) ) |
| 177 |
176
|
2eximdv |
|- ( ph -> ( E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. g E. f E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) ) |
| 178 |
177
|
eximdv |
|- ( ph -> ( E. m E. g E. f ( m e. NN /\ ( g Fn ran G /\ A. l e. ran G ( g ` l ) e. l /\ f : ( 1 ... m ) -1-1-onto-> ran G ) ) -> E. m E. g E. f E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) ) |
| 179 |
128 178
|
mpd |
|- ( ph -> E. m E. g E. f E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 180 |
|
id |
|- ( E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 181 |
180
|
exlimivv |
|- ( E. g E. f E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 182 |
181
|
eximi |
|- ( E. m E. g E. f E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 183 |
179 182
|
syl |
|- ( ph -> E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |