Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem27.1 |
|- G = ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
2 |
|
stoweidlem27.2 |
|- ( ph -> Q e. _V ) |
3 |
|
stoweidlem27.3 |
|- ( ph -> M e. NN ) |
4 |
|
stoweidlem27.4 |
|- ( ph -> Y Fn ran G ) |
5 |
|
stoweidlem27.5 |
|- ( ph -> ran G e. _V ) |
6 |
|
stoweidlem27.6 |
|- ( ( ph /\ l e. ran G ) -> ( Y ` l ) e. l ) |
7 |
|
stoweidlem27.7 |
|- ( ph -> F : ( 1 ... M ) -1-1-onto-> ran G ) |
8 |
|
stoweidlem27.8 |
|- ( ph -> ( T \ U ) C_ U. X ) |
9 |
|
stoweidlem27.9 |
|- F/ t ph |
10 |
|
stoweidlem27.10 |
|- F/ w ph |
11 |
|
stoweidlem27.11 |
|- F/_ h Q |
12 |
|
fnex |
|- ( ( Y Fn ran G /\ ran G e. _V ) -> Y e. _V ) |
13 |
4 5 12
|
syl2anc |
|- ( ph -> Y e. _V ) |
14 |
|
f1ofn |
|- ( F : ( 1 ... M ) -1-1-onto-> ran G -> F Fn ( 1 ... M ) ) |
15 |
7 14
|
syl |
|- ( ph -> F Fn ( 1 ... M ) ) |
16 |
|
ovex |
|- ( 1 ... M ) e. _V |
17 |
|
fnex |
|- ( ( F Fn ( 1 ... M ) /\ ( 1 ... M ) e. _V ) -> F e. _V ) |
18 |
15 16 17
|
sylancl |
|- ( ph -> F e. _V ) |
19 |
|
coexg |
|- ( ( Y e. _V /\ F e. _V ) -> ( Y o. F ) e. _V ) |
20 |
13 18 19
|
syl2anc |
|- ( ph -> ( Y o. F ) e. _V ) |
21 |
|
f1of |
|- ( F : ( 1 ... M ) -1-1-onto-> ran G -> F : ( 1 ... M ) --> ran G ) |
22 |
7 21
|
syl |
|- ( ph -> F : ( 1 ... M ) --> ran G ) |
23 |
|
fnfco |
|- ( ( Y Fn ran G /\ F : ( 1 ... M ) --> ran G ) -> ( Y o. F ) Fn ( 1 ... M ) ) |
24 |
4 22 23
|
syl2anc |
|- ( ph -> ( Y o. F ) Fn ( 1 ... M ) ) |
25 |
|
rncoss |
|- ran ( Y o. F ) C_ ran Y |
26 |
|
fvelrnb |
|- ( Y Fn ran G -> ( k e. ran Y <-> E. l e. ran G ( Y ` l ) = k ) ) |
27 |
4 26
|
syl |
|- ( ph -> ( k e. ran Y <-> E. l e. ran G ( Y ` l ) = k ) ) |
28 |
27
|
biimpa |
|- ( ( ph /\ k e. ran Y ) -> E. l e. ran G ( Y ` l ) = k ) |
29 |
|
nfmpt1 |
|- F/_ w ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
30 |
1 29
|
nfcxfr |
|- F/_ w G |
31 |
30
|
nfrn |
|- F/_ w ran G |
32 |
31
|
nfcri |
|- F/ w l e. ran G |
33 |
10 32
|
nfan |
|- F/ w ( ph /\ l e. ran G ) |
34 |
6
|
ad2antrr |
|- ( ( ( ( ph /\ l e. ran G ) /\ w e. X ) /\ l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> ( Y ` l ) e. l ) |
35 |
|
simpr |
|- ( ( ( ( ph /\ l e. ran G ) /\ w e. X ) /\ l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
36 |
34 35
|
eleqtrd |
|- ( ( ( ( ph /\ l e. ran G ) /\ w e. X ) /\ l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> ( Y ` l ) e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
37 |
|
nfcv |
|- F/_ h ( Y ` l ) |
38 |
|
nfv |
|- F/ h w = { t e. T | 0 < ( ( Y ` l ) ` t ) } |
39 |
|
fveq1 |
|- ( h = ( Y ` l ) -> ( h ` t ) = ( ( Y ` l ) ` t ) ) |
40 |
39
|
breq2d |
|- ( h = ( Y ` l ) -> ( 0 < ( h ` t ) <-> 0 < ( ( Y ` l ) ` t ) ) ) |
41 |
40
|
rabbidv |
|- ( h = ( Y ` l ) -> { t e. T | 0 < ( h ` t ) } = { t e. T | 0 < ( ( Y ` l ) ` t ) } ) |
42 |
41
|
eqeq2d |
|- ( h = ( Y ` l ) -> ( w = { t e. T | 0 < ( h ` t ) } <-> w = { t e. T | 0 < ( ( Y ` l ) ` t ) } ) ) |
43 |
37 11 38 42
|
elrabf |
|- ( ( Y ` l ) e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } <-> ( ( Y ` l ) e. Q /\ w = { t e. T | 0 < ( ( Y ` l ) ` t ) } ) ) |
44 |
36 43
|
sylib |
|- ( ( ( ( ph /\ l e. ran G ) /\ w e. X ) /\ l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> ( ( Y ` l ) e. Q /\ w = { t e. T | 0 < ( ( Y ` l ) ` t ) } ) ) |
45 |
44
|
simpld |
|- ( ( ( ( ph /\ l e. ran G ) /\ w e. X ) /\ l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) -> ( Y ` l ) e. Q ) |
46 |
|
simpr |
|- ( ( ph /\ l e. ran G ) -> l e. ran G ) |
47 |
1
|
elrnmpt |
|- ( l e. ran G -> ( l e. ran G <-> E. w e. X l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) ) |
48 |
46 47
|
syl |
|- ( ( ph /\ l e. ran G ) -> ( l e. ran G <-> E. w e. X l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) ) |
49 |
46 48
|
mpbid |
|- ( ( ph /\ l e. ran G ) -> E. w e. X l = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
50 |
33 45 49
|
r19.29af |
|- ( ( ph /\ l e. ran G ) -> ( Y ` l ) e. Q ) |
51 |
50
|
adantlr |
|- ( ( ( ph /\ k e. ran Y ) /\ l e. ran G ) -> ( Y ` l ) e. Q ) |
52 |
|
eleq1 |
|- ( ( Y ` l ) = k -> ( ( Y ` l ) e. Q <-> k e. Q ) ) |
53 |
51 52
|
syl5ibcom |
|- ( ( ( ph /\ k e. ran Y ) /\ l e. ran G ) -> ( ( Y ` l ) = k -> k e. Q ) ) |
54 |
53
|
reximdva |
|- ( ( ph /\ k e. ran Y ) -> ( E. l e. ran G ( Y ` l ) = k -> E. l e. ran G k e. Q ) ) |
55 |
28 54
|
mpd |
|- ( ( ph /\ k e. ran Y ) -> E. l e. ran G k e. Q ) |
56 |
|
idd |
|- ( l e. ran G -> ( k e. Q -> k e. Q ) ) |
57 |
56
|
a1i |
|- ( ( ph /\ k e. ran Y ) -> ( l e. ran G -> ( k e. Q -> k e. Q ) ) ) |
58 |
57
|
rexlimdv |
|- ( ( ph /\ k e. ran Y ) -> ( E. l e. ran G k e. Q -> k e. Q ) ) |
59 |
55 58
|
mpd |
|- ( ( ph /\ k e. ran Y ) -> k e. Q ) |
60 |
59
|
ex |
|- ( ph -> ( k e. ran Y -> k e. Q ) ) |
61 |
60
|
ssrdv |
|- ( ph -> ran Y C_ Q ) |
62 |
25 61
|
sstrid |
|- ( ph -> ran ( Y o. F ) C_ Q ) |
63 |
|
df-f |
|- ( ( Y o. F ) : ( 1 ... M ) --> Q <-> ( ( Y o. F ) Fn ( 1 ... M ) /\ ran ( Y o. F ) C_ Q ) ) |
64 |
24 62 63
|
sylanbrc |
|- ( ph -> ( Y o. F ) : ( 1 ... M ) --> Q ) |
65 |
|
nfv |
|- F/ w t e. ( T \ U ) |
66 |
10 65
|
nfan |
|- F/ w ( ph /\ t e. ( T \ U ) ) |
67 |
|
nfv |
|- F/ w E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) |
68 |
8
|
sselda |
|- ( ( ph /\ t e. ( T \ U ) ) -> t e. U. X ) |
69 |
|
eluni |
|- ( t e. U. X <-> E. w ( t e. w /\ w e. X ) ) |
70 |
68 69
|
sylib |
|- ( ( ph /\ t e. ( T \ U ) ) -> E. w ( t e. w /\ w e. X ) ) |
71 |
1
|
funmpt2 |
|- Fun G |
72 |
1
|
dmeqi |
|- dom G = dom ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
73 |
11
|
rabexgf |
|- ( Q e. _V -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
74 |
2 73
|
syl |
|- ( ph -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
75 |
74
|
adantr |
|- ( ( ph /\ w e. X ) -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
76 |
75
|
ex |
|- ( ph -> ( w e. X -> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) ) |
77 |
10 76
|
ralrimi |
|- ( ph -> A. w e. X { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) |
78 |
|
dmmptg |
|- ( A. w e. X { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V -> dom ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) = X ) |
79 |
77 78
|
syl |
|- ( ph -> dom ( w e. X |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) = X ) |
80 |
72 79
|
eqtrid |
|- ( ph -> dom G = X ) |
81 |
80
|
eleq2d |
|- ( ph -> ( w e. dom G <-> w e. X ) ) |
82 |
81
|
biimpar |
|- ( ( ph /\ w e. X ) -> w e. dom G ) |
83 |
|
fvelrn |
|- ( ( Fun G /\ w e. dom G ) -> ( G ` w ) e. ran G ) |
84 |
71 82 83
|
sylancr |
|- ( ( ph /\ w e. X ) -> ( G ` w ) e. ran G ) |
85 |
84
|
adantrl |
|- ( ( ph /\ ( t e. w /\ w e. X ) ) -> ( G ` w ) e. ran G ) |
86 |
22
|
ad2antrr |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> F : ( 1 ... M ) --> ran G ) |
87 |
|
simprl |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> i e. ( 1 ... M ) ) |
88 |
|
fvco3 |
|- ( ( F : ( 1 ... M ) --> ran G /\ i e. ( 1 ... M ) ) -> ( ( Y o. F ) ` i ) = ( Y ` ( F ` i ) ) ) |
89 |
86 87 88
|
syl2anc |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> ( ( Y o. F ) ` i ) = ( Y ` ( F ` i ) ) ) |
90 |
|
fveq2 |
|- ( ( F ` i ) = ( G ` w ) -> ( Y ` ( F ` i ) ) = ( Y ` ( G ` w ) ) ) |
91 |
90
|
ad2antll |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> ( Y ` ( F ` i ) ) = ( Y ` ( G ` w ) ) ) |
92 |
89 91
|
eqtrd |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> ( ( Y o. F ) ` i ) = ( Y ` ( G ` w ) ) ) |
93 |
|
eleq1 |
|- ( l = ( G ` w ) -> ( l e. ran G <-> ( G ` w ) e. ran G ) ) |
94 |
93
|
anbi2d |
|- ( l = ( G ` w ) -> ( ( ph /\ l e. ran G ) <-> ( ph /\ ( G ` w ) e. ran G ) ) ) |
95 |
|
eleq2 |
|- ( l = ( G ` w ) -> ( ( Y ` l ) e. l <-> ( Y ` l ) e. ( G ` w ) ) ) |
96 |
|
fveq2 |
|- ( l = ( G ` w ) -> ( Y ` l ) = ( Y ` ( G ` w ) ) ) |
97 |
96
|
eleq1d |
|- ( l = ( G ` w ) -> ( ( Y ` l ) e. ( G ` w ) <-> ( Y ` ( G ` w ) ) e. ( G ` w ) ) ) |
98 |
95 97
|
bitrd |
|- ( l = ( G ` w ) -> ( ( Y ` l ) e. l <-> ( Y ` ( G ` w ) ) e. ( G ` w ) ) ) |
99 |
94 98
|
imbi12d |
|- ( l = ( G ` w ) -> ( ( ( ph /\ l e. ran G ) -> ( Y ` l ) e. l ) <-> ( ( ph /\ ( G ` w ) e. ran G ) -> ( Y ` ( G ` w ) ) e. ( G ` w ) ) ) ) |
100 |
99 6
|
vtoclg |
|- ( ( G ` w ) e. ran G -> ( ( ph /\ ( G ` w ) e. ran G ) -> ( Y ` ( G ` w ) ) e. ( G ` w ) ) ) |
101 |
100
|
anabsi7 |
|- ( ( ph /\ ( G ` w ) e. ran G ) -> ( Y ` ( G ` w ) ) e. ( G ` w ) ) |
102 |
101
|
adantr |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> ( Y ` ( G ` w ) ) e. ( G ` w ) ) |
103 |
92 102
|
eqeltrd |
|- ( ( ( ph /\ ( G ` w ) e. ran G ) /\ ( i e. ( 1 ... M ) /\ ( F ` i ) = ( G ` w ) ) ) -> ( ( Y o. F ) ` i ) e. ( G ` w ) ) |
104 |
|
f1ofo |
|- ( F : ( 1 ... M ) -1-1-onto-> ran G -> F : ( 1 ... M ) -onto-> ran G ) |
105 |
|
forn |
|- ( F : ( 1 ... M ) -onto-> ran G -> ran F = ran G ) |
106 |
7 104 105
|
3syl |
|- ( ph -> ran F = ran G ) |
107 |
106
|
eleq2d |
|- ( ph -> ( ( G ` w ) e. ran F <-> ( G ` w ) e. ran G ) ) |
108 |
107
|
biimpar |
|- ( ( ph /\ ( G ` w ) e. ran G ) -> ( G ` w ) e. ran F ) |
109 |
15
|
adantr |
|- ( ( ph /\ ( G ` w ) e. ran G ) -> F Fn ( 1 ... M ) ) |
110 |
|
fvelrnb |
|- ( F Fn ( 1 ... M ) -> ( ( G ` w ) e. ran F <-> E. i e. ( 1 ... M ) ( F ` i ) = ( G ` w ) ) ) |
111 |
109 110
|
syl |
|- ( ( ph /\ ( G ` w ) e. ran G ) -> ( ( G ` w ) e. ran F <-> E. i e. ( 1 ... M ) ( F ` i ) = ( G ` w ) ) ) |
112 |
108 111
|
mpbid |
|- ( ( ph /\ ( G ` w ) e. ran G ) -> E. i e. ( 1 ... M ) ( F ` i ) = ( G ` w ) ) |
113 |
103 112
|
reximddv |
|- ( ( ph /\ ( G ` w ) e. ran G ) -> E. i e. ( 1 ... M ) ( ( Y o. F ) ` i ) e. ( G ` w ) ) |
114 |
85 113
|
syldan |
|- ( ( ph /\ ( t e. w /\ w e. X ) ) -> E. i e. ( 1 ... M ) ( ( Y o. F ) ` i ) e. ( G ` w ) ) |
115 |
|
simplrl |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> t e. w ) |
116 |
|
simpr |
|- ( ( ph /\ w e. X ) -> w e. X ) |
117 |
1
|
fvmpt2 |
|- ( ( w e. X /\ { h e. Q | w = { t e. T | 0 < ( h ` t ) } } e. _V ) -> ( G ` w ) = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
118 |
116 75 117
|
syl2anc |
|- ( ( ph /\ w e. X ) -> ( G ` w ) = { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
119 |
118
|
eleq2d |
|- ( ( ph /\ w e. X ) -> ( ( ( Y o. F ) ` i ) e. ( G ` w ) <-> ( ( Y o. F ) ` i ) e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) ) |
120 |
119
|
biimpa |
|- ( ( ( ph /\ w e. X ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> ( ( Y o. F ) ` i ) e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
121 |
120
|
adantlrl |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> ( ( Y o. F ) ` i ) e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
122 |
|
nfcv |
|- F/_ h ( ( Y o. F ) ` i ) |
123 |
|
nfv |
|- F/ h w = { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } |
124 |
|
fveq1 |
|- ( h = ( ( Y o. F ) ` i ) -> ( h ` t ) = ( ( ( Y o. F ) ` i ) ` t ) ) |
125 |
124
|
breq2d |
|- ( h = ( ( Y o. F ) ` i ) -> ( 0 < ( h ` t ) <-> 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
126 |
125
|
rabbidv |
|- ( h = ( ( Y o. F ) ` i ) -> { t e. T | 0 < ( h ` t ) } = { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } ) |
127 |
126
|
eqeq2d |
|- ( h = ( ( Y o. F ) ` i ) -> ( w = { t e. T | 0 < ( h ` t ) } <-> w = { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } ) ) |
128 |
122 11 123 127
|
elrabf |
|- ( ( ( Y o. F ) ` i ) e. { h e. Q | w = { t e. T | 0 < ( h ` t ) } } <-> ( ( ( Y o. F ) ` i ) e. Q /\ w = { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } ) ) |
129 |
121 128
|
sylib |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> ( ( ( Y o. F ) ` i ) e. Q /\ w = { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } ) ) |
130 |
129
|
simprd |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> w = { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } ) |
131 |
115 130
|
eleqtrd |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> t e. { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } ) |
132 |
|
rabid |
|- ( t e. { t e. T | 0 < ( ( ( Y o. F ) ` i ) ` t ) } <-> ( t e. T /\ 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
133 |
131 132
|
sylib |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> ( t e. T /\ 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
134 |
133
|
simprd |
|- ( ( ( ph /\ ( t e. w /\ w e. X ) ) /\ ( ( Y o. F ) ` i ) e. ( G ` w ) ) -> 0 < ( ( ( Y o. F ) ` i ) ` t ) ) |
135 |
134
|
ex |
|- ( ( ph /\ ( t e. w /\ w e. X ) ) -> ( ( ( Y o. F ) ` i ) e. ( G ` w ) -> 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
136 |
135
|
reximdv |
|- ( ( ph /\ ( t e. w /\ w e. X ) ) -> ( E. i e. ( 1 ... M ) ( ( Y o. F ) ` i ) e. ( G ` w ) -> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
137 |
114 136
|
mpd |
|- ( ( ph /\ ( t e. w /\ w e. X ) ) -> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) |
138 |
137
|
ex |
|- ( ph -> ( ( t e. w /\ w e. X ) -> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
139 |
138
|
adantr |
|- ( ( ph /\ t e. ( T \ U ) ) -> ( ( t e. w /\ w e. X ) -> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
140 |
66 67 70 139
|
exlimimdd |
|- ( ( ph /\ t e. ( T \ U ) ) -> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) |
141 |
140
|
ex |
|- ( ph -> ( t e. ( T \ U ) -> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
142 |
9 141
|
ralrimi |
|- ( ph -> A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) |
143 |
3 64 142
|
jca32 |
|- ( ph -> ( M e. NN /\ ( ( Y o. F ) : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) ) |
144 |
|
feq1 |
|- ( q = ( Y o. F ) -> ( q : ( 1 ... M ) --> Q <-> ( Y o. F ) : ( 1 ... M ) --> Q ) ) |
145 |
|
fveq1 |
|- ( q = ( Y o. F ) -> ( q ` i ) = ( ( Y o. F ) ` i ) ) |
146 |
145
|
fveq1d |
|- ( q = ( Y o. F ) -> ( ( q ` i ) ` t ) = ( ( ( Y o. F ) ` i ) ` t ) ) |
147 |
146
|
breq2d |
|- ( q = ( Y o. F ) -> ( 0 < ( ( q ` i ) ` t ) <-> 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
148 |
147
|
rexbidv |
|- ( q = ( Y o. F ) -> ( E. i e. ( 1 ... M ) 0 < ( ( q ` i ) ` t ) <-> E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
149 |
148
|
ralbidv |
|- ( q = ( Y o. F ) -> ( A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( q ` i ) ` t ) <-> A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) |
150 |
144 149
|
anbi12d |
|- ( q = ( Y o. F ) -> ( ( q : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( q ` i ) ` t ) ) <-> ( ( Y o. F ) : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) ) |
151 |
150
|
anbi2d |
|- ( q = ( Y o. F ) -> ( ( M e. NN /\ ( q : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( q ` i ) ` t ) ) ) <-> ( M e. NN /\ ( ( Y o. F ) : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) ) ) |
152 |
151
|
spcegv |
|- ( ( Y o. F ) e. _V -> ( ( M e. NN /\ ( ( Y o. F ) : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( ( Y o. F ) ` i ) ` t ) ) ) -> E. q ( M e. NN /\ ( q : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( q ` i ) ` t ) ) ) ) ) |
153 |
20 143 152
|
sylc |
|- ( ph -> E. q ( M e. NN /\ ( q : ( 1 ... M ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... M ) 0 < ( ( q ` i ) ` t ) ) ) ) |