| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem27.1 | ⊢ 𝐺  =  ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 2 |  | stoweidlem27.2 | ⊢ ( 𝜑  →  𝑄  ∈  V ) | 
						
							| 3 |  | stoweidlem27.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 4 |  | stoweidlem27.4 | ⊢ ( 𝜑  →  𝑌  Fn  ran  𝐺 ) | 
						
							| 5 |  | stoweidlem27.5 | ⊢ ( 𝜑  →  ran  𝐺  ∈  V ) | 
						
							| 6 |  | stoweidlem27.6 | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  →  ( 𝑌 ‘ 𝑙 )  ∈  𝑙 ) | 
						
							| 7 |  | stoweidlem27.7 | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐺 ) | 
						
							| 8 |  | stoweidlem27.8 | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ⊆  ∪  𝑋 ) | 
						
							| 9 |  | stoweidlem27.9 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 10 |  | stoweidlem27.10 | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 11 |  | stoweidlem27.11 | ⊢ Ⅎ ℎ 𝑄 | 
						
							| 12 |  | fnex | ⊢ ( ( 𝑌  Fn  ran  𝐺  ∧  ran  𝐺  ∈  V )  →  𝑌  ∈  V ) | 
						
							| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 14 |  | f1ofn | ⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐺  →  𝐹  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝜑  →  𝐹  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 16 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 17 |  | fnex | ⊢ ( ( 𝐹  Fn  ( 1 ... 𝑀 )  ∧  ( 1 ... 𝑀 )  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 19 |  | coexg | ⊢ ( ( 𝑌  ∈  V  ∧  𝐹  ∈  V )  →  ( 𝑌  ∘  𝐹 )  ∈  V ) | 
						
							| 20 | 13 18 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∘  𝐹 )  ∈  V ) | 
						
							| 21 |  | f1of | ⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐺  →  𝐹 : ( 1 ... 𝑀 ) ⟶ ran  𝐺 ) | 
						
							| 22 | 7 21 | syl | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑀 ) ⟶ ran  𝐺 ) | 
						
							| 23 |  | fnfco | ⊢ ( ( 𝑌  Fn  ran  𝐺  ∧  𝐹 : ( 1 ... 𝑀 ) ⟶ ran  𝐺 )  →  ( 𝑌  ∘  𝐹 )  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 24 | 4 22 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  ∘  𝐹 )  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 25 |  | rncoss | ⊢ ran  ( 𝑌  ∘  𝐹 )  ⊆  ran  𝑌 | 
						
							| 26 |  | fvelrnb | ⊢ ( 𝑌  Fn  ran  𝐺  →  ( 𝑘  ∈  ran  𝑌  ↔  ∃ 𝑙  ∈  ran  𝐺 ( 𝑌 ‘ 𝑙 )  =  𝑘 ) ) | 
						
							| 27 | 4 26 | syl | ⊢ ( 𝜑  →  ( 𝑘  ∈  ran  𝑌  ↔  ∃ 𝑙  ∈  ran  𝐺 ( 𝑌 ‘ 𝑙 )  =  𝑘 ) ) | 
						
							| 28 | 27 | biimpa | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  →  ∃ 𝑙  ∈  ran  𝐺 ( 𝑌 ‘ 𝑙 )  =  𝑘 ) | 
						
							| 29 |  | nfmpt1 | ⊢ Ⅎ 𝑤 ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 30 | 1 29 | nfcxfr | ⊢ Ⅎ 𝑤 𝐺 | 
						
							| 31 | 30 | nfrn | ⊢ Ⅎ 𝑤 ran  𝐺 | 
						
							| 32 | 31 | nfcri | ⊢ Ⅎ 𝑤 𝑙  ∈  ran  𝐺 | 
						
							| 33 | 10 32 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑙  ∈  ran  𝐺 ) | 
						
							| 34 | 6 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ( 𝑌 ‘ 𝑙 )  ∈  𝑙 ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 36 | 34 35 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ( 𝑌 ‘ 𝑙 )  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ ℎ ( 𝑌 ‘ 𝑙 ) | 
						
							| 38 |  | nfv | ⊢ Ⅎ ℎ 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } | 
						
							| 39 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑌 ‘ 𝑙 )  →  ( ℎ ‘ 𝑡 )  =  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) ) | 
						
							| 40 | 39 | breq2d | ⊢ ( ℎ  =  ( 𝑌 ‘ 𝑙 )  →  ( 0  <  ( ℎ ‘ 𝑡 )  ↔  0  <  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) ) ) | 
						
							| 41 | 40 | rabbidv | ⊢ ( ℎ  =  ( 𝑌 ‘ 𝑙 )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) | 
						
							| 42 | 41 | eqeq2d | ⊢ ( ℎ  =  ( 𝑌 ‘ 𝑙 )  →  ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  ↔  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) ) | 
						
							| 43 | 37 11 38 42 | elrabf | ⊢ ( ( 𝑌 ‘ 𝑙 )  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ↔  ( ( 𝑌 ‘ 𝑙 )  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) ) | 
						
							| 44 | 36 43 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ( ( 𝑌 ‘ 𝑙 )  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) ) | 
						
							| 45 | 44 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  ∧  𝑤  ∈  𝑋 )  ∧  𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  →  ( 𝑌 ‘ 𝑙 )  ∈  𝑄 ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  →  𝑙  ∈  ran  𝐺 ) | 
						
							| 47 | 1 | elrnmpt | ⊢ ( 𝑙  ∈  ran  𝐺  →  ( 𝑙  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑋 𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  →  ( 𝑙  ∈  ran  𝐺  ↔  ∃ 𝑤  ∈  𝑋 𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) ) | 
						
							| 49 | 46 48 | mpbid | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  →  ∃ 𝑤  ∈  𝑋 𝑙  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 50 | 33 45 49 | r19.29af | ⊢ ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  →  ( 𝑌 ‘ 𝑙 )  ∈  𝑄 ) | 
						
							| 51 | 50 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  ∧  𝑙  ∈  ran  𝐺 )  →  ( 𝑌 ‘ 𝑙 )  ∈  𝑄 ) | 
						
							| 52 |  | eleq1 | ⊢ ( ( 𝑌 ‘ 𝑙 )  =  𝑘  →  ( ( 𝑌 ‘ 𝑙 )  ∈  𝑄  ↔  𝑘  ∈  𝑄 ) ) | 
						
							| 53 | 51 52 | syl5ibcom | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  ∧  𝑙  ∈  ran  𝐺 )  →  ( ( 𝑌 ‘ 𝑙 )  =  𝑘  →  𝑘  ∈  𝑄 ) ) | 
						
							| 54 | 53 | reximdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  →  ( ∃ 𝑙  ∈  ran  𝐺 ( 𝑌 ‘ 𝑙 )  =  𝑘  →  ∃ 𝑙  ∈  ran  𝐺 𝑘  ∈  𝑄 ) ) | 
						
							| 55 | 28 54 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  →  ∃ 𝑙  ∈  ran  𝐺 𝑘  ∈  𝑄 ) | 
						
							| 56 |  | idd | ⊢ ( 𝑙  ∈  ran  𝐺  →  ( 𝑘  ∈  𝑄  →  𝑘  ∈  𝑄 ) ) | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  →  ( 𝑙  ∈  ran  𝐺  →  ( 𝑘  ∈  𝑄  →  𝑘  ∈  𝑄 ) ) ) | 
						
							| 58 | 57 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  →  ( ∃ 𝑙  ∈  ran  𝐺 𝑘  ∈  𝑄  →  𝑘  ∈  𝑄 ) ) | 
						
							| 59 | 55 58 | mpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ran  𝑌 )  →  𝑘  ∈  𝑄 ) | 
						
							| 60 | 59 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  ran  𝑌  →  𝑘  ∈  𝑄 ) ) | 
						
							| 61 | 60 | ssrdv | ⊢ ( 𝜑  →  ran  𝑌  ⊆  𝑄 ) | 
						
							| 62 | 25 61 | sstrid | ⊢ ( 𝜑  →  ran  ( 𝑌  ∘  𝐹 )  ⊆  𝑄 ) | 
						
							| 63 |  | df-f | ⊢ ( ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄  ↔  ( ( 𝑌  ∘  𝐹 )  Fn  ( 1 ... 𝑀 )  ∧  ran  ( 𝑌  ∘  𝐹 )  ⊆  𝑄 ) ) | 
						
							| 64 | 24 62 63 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ) | 
						
							| 65 |  | nfv | ⊢ Ⅎ 𝑤 𝑡  ∈  ( 𝑇  ∖  𝑈 ) | 
						
							| 66 | 10 65 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 67 |  | nfv | ⊢ Ⅎ 𝑤 ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) | 
						
							| 68 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑡  ∈  ∪  𝑋 ) | 
						
							| 69 |  | eluni | ⊢ ( 𝑡  ∈  ∪  𝑋  ↔  ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) ) | 
						
							| 70 | 68 69 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) ) | 
						
							| 71 | 1 | funmpt2 | ⊢ Fun  𝐺 | 
						
							| 72 | 1 | dmeqi | ⊢ dom  𝐺  =  dom  ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 73 | 11 | rabexgf | ⊢ ( 𝑄  ∈  V  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 74 | 2 73 | syl | ⊢ ( 𝜑  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 76 | 75 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑋  →  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) ) | 
						
							| 77 | 10 76 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑋 { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V ) | 
						
							| 78 |  | dmmptg | ⊢ ( ∀ 𝑤  ∈  𝑋 { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V  →  dom  ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  =  𝑋 ) | 
						
							| 79 | 77 78 | syl | ⊢ ( 𝜑  →  dom  ( 𝑤  ∈  𝑋  ↦  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } )  =  𝑋 ) | 
						
							| 80 | 72 79 | eqtrid | ⊢ ( 𝜑  →  dom  𝐺  =  𝑋 ) | 
						
							| 81 | 80 | eleq2d | ⊢ ( 𝜑  →  ( 𝑤  ∈  dom  𝐺  ↔  𝑤  ∈  𝑋 ) ) | 
						
							| 82 | 81 | biimpar | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝑤  ∈  dom  𝐺 ) | 
						
							| 83 |  | fvelrn | ⊢ ( ( Fun  𝐺  ∧  𝑤  ∈  dom  𝐺 )  →  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 ) | 
						
							| 84 | 71 82 83 | sylancr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 ) | 
						
							| 85 | 84 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  →  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 ) | 
						
							| 86 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  𝐹 : ( 1 ... 𝑀 ) ⟶ ran  𝐺 ) | 
						
							| 87 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 88 |  | fvco3 | ⊢ ( ( 𝐹 : ( 1 ... 𝑀 ) ⟶ ran  𝐺  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  =  ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 89 | 86 87 88 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  =  ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 91 | 90 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 92 | 89 91 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  =  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 93 |  | eleq1 | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝑙  ∈  ran  𝐺  ↔  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 ) ) | 
						
							| 94 | 93 | anbi2d | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  ↔  ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 ) ) ) | 
						
							| 95 |  | eleq2 | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝑌 ‘ 𝑙 )  ∈  𝑙  ↔  ( 𝑌 ‘ 𝑙 )  ∈  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( 𝑌 ‘ 𝑙 )  =  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 97 | 96 | eleq1d | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝑌 ‘ 𝑙 )  ∈  ( 𝐺 ‘ 𝑤 )  ↔  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) )  ∈  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 98 | 95 97 | bitrd | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( ( 𝑌 ‘ 𝑙 )  ∈  𝑙  ↔  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) )  ∈  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 99 | 94 98 | imbi12d | ⊢ ( 𝑙  =  ( 𝐺 ‘ 𝑤 )  →  ( ( ( 𝜑  ∧  𝑙  ∈  ran  𝐺 )  →  ( 𝑌 ‘ 𝑙 )  ∈  𝑙 )  ↔  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) )  ∈  ( 𝐺 ‘ 𝑤 ) ) ) ) | 
						
							| 100 | 99 6 | vtoclg | ⊢ ( ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) )  ∈  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 101 | 100 | anabsi7 | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) )  ∈  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) )  ∈  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 103 | 92 102 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) )  →  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 104 |  | f1ofo | ⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐺  →  𝐹 : ( 1 ... 𝑀 ) –onto→ ran  𝐺 ) | 
						
							| 105 |  | forn | ⊢ ( 𝐹 : ( 1 ... 𝑀 ) –onto→ ran  𝐺  →  ran  𝐹  =  ran  𝐺 ) | 
						
							| 106 | 7 104 105 | 3syl | ⊢ ( 𝜑  →  ran  𝐹  =  ran  𝐺 ) | 
						
							| 107 | 106 | eleq2d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐹  ↔  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 ) ) | 
						
							| 108 | 107 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐹 ) | 
						
							| 109 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  𝐹  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 110 |  | fvelrnb | ⊢ ( 𝐹  Fn  ( 1 ... 𝑀 )  →  ( ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐹  ↔  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ( ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐹  ↔  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) ) | 
						
							| 112 | 108 111 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) ( 𝐹 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 113 | 103 112 | reximddv | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑤 )  ∈  ran  𝐺 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 114 | 85 113 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) ) | 
						
							| 115 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  𝑡  ∈  𝑤 ) | 
						
							| 116 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  𝑤  ∈  𝑋 ) | 
						
							| 117 | 1 | fvmpt2 | ⊢ ( ( 𝑤  ∈  𝑋  ∧  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ∈  V )  →  ( 𝐺 ‘ 𝑤 )  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 118 | 116 75 117 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ( 𝐺 ‘ 𝑤 )  =  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 119 | 118 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  →  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 )  ↔  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) ) | 
						
							| 120 | 119 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑋 )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 121 | 120 | adantlrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } } ) | 
						
							| 122 |  | nfcv | ⊢ Ⅎ ℎ ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) | 
						
							| 123 |  | nfv | ⊢ Ⅎ ℎ 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } | 
						
							| 124 |  | fveq1 | ⊢ ( ℎ  =  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  →  ( ℎ ‘ 𝑡 )  =  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 125 | 124 | breq2d | ⊢ ( ℎ  =  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  →  ( 0  <  ( ℎ ‘ 𝑡 )  ↔  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 126 | 125 | rabbidv | ⊢ ( ℎ  =  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  →  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) | 
						
							| 127 | 126 | eqeq2d | ⊢ ( ℎ  =  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  →  ( 𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) }  ↔  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) ) | 
						
							| 128 | 122 11 123 127 | elrabf | ⊢ ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  { ℎ  ∈  𝑄  ∣  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ℎ ‘ 𝑡 ) } }  ↔  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) ) | 
						
							| 129 | 121 128 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  𝑄  ∧  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) ) | 
						
							| 130 | 129 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  𝑤  =  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) | 
						
							| 131 | 115 130 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) | 
						
							| 132 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 133 | 131 132 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  ( 𝑡  ∈  𝑇  ∧  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 134 | 133 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  ∧  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 ) )  →  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 135 | 134 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  →  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 )  →  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 136 | 135 | reximdv | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  →  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 )  ∈  ( 𝐺 ‘ 𝑤 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 137 | 114 136 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 ) )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 138 | 137 | ex | ⊢ ( 𝜑  →  ( ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  𝑋 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 140 | 66 67 70 139 | exlimimdd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 141 | 140 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 142 | 9 141 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 143 | 3 64 142 | jca32 | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  ( ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 144 |  | feq1 | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄  ↔  ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ) ) | 
						
							| 145 |  | fveq1 | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( 𝑞 ‘ 𝑖 )  =  ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ) | 
						
							| 146 | 145 | fveq1d | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 147 | 146 | breq2d | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  ↔  0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 148 | 147 | rexbidv | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  ↔  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 149 | 148 | ralbidv | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 150 | 144 149 | anbi12d | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) )  ↔  ( ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 151 | 150 | anbi2d | ⊢ ( 𝑞  =  ( 𝑌  ∘  𝐹 )  →  ( ( 𝑀  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ↔  ( 𝑀  ∈  ℕ  ∧  ( ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 152 | 151 | spcegv | ⊢ ( ( 𝑌  ∘  𝐹 )  ∈  V  →  ( ( 𝑀  ∈  ℕ  ∧  ( ( 𝑌  ∘  𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( ( 𝑌  ∘  𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ∃ 𝑞 ( 𝑀  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 153 | 20 143 152 | sylc | ⊢ ( 𝜑  →  ∃ 𝑞 ( 𝑀  ∈  ℕ  ∧  ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |