Description: A version of rabexg using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabexgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | rabexgf | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 3 | simpl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐴 ) | |
| 4 | 3 | ss2abi | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
| 5 | 1 | abid2f | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |
| 6 | 4 5 | sseqtri | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 |
| 7 | 2 6 | eqsstri | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
| 8 | ssexg | ⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |