Description: A version of rabexg using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabexgf.1 | |- F/_ x A |
|
| Assertion | rabexgf | |- ( A e. V -> { x e. A | ph } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexgf.1 | |- F/_ x A |
|
| 2 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 3 | simpl | |- ( ( x e. A /\ ph ) -> x e. A ) |
|
| 4 | 3 | ss2abi | |- { x | ( x e. A /\ ph ) } C_ { x | x e. A } |
| 5 | 1 | abid2f | |- { x | x e. A } = A |
| 6 | 4 5 | sseqtri | |- { x | ( x e. A /\ ph ) } C_ A |
| 7 | 2 6 | eqsstri | |- { x e. A | ph } C_ A |
| 8 | ssexg | |- ( ( { x e. A | ph } C_ A /\ A e. V ) -> { x e. A | ph } e. _V ) |
|
| 9 | 7 8 | mpan | |- ( A e. V -> { x e. A | ph } e. _V ) |