| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcnre.1 |
|- K = ( topGen ` ran (,) ) |
| 2 |
|
fcnre.3 |
|- T = U. J |
| 3 |
|
sfcnre.5 |
|- C = ( J Cn K ) |
| 4 |
|
fcnre.6 |
|- ( ph -> F e. C ) |
| 5 |
4 3
|
eleqtrdi |
|- ( ph -> F e. ( J Cn K ) ) |
| 6 |
|
cntop1 |
|- ( F e. ( J Cn K ) -> J e. Top ) |
| 7 |
5 6
|
syl |
|- ( ph -> J e. Top ) |
| 8 |
2
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` T ) ) |
| 9 |
7 8
|
sylib |
|- ( ph -> J e. ( TopOn ` T ) ) |
| 10 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 11 |
1 10
|
eqeltri |
|- K e. ( TopOn ` RR ) |
| 12 |
11
|
a1i |
|- ( ph -> K e. ( TopOn ` RR ) ) |
| 13 |
|
cnf2 |
|- ( ( J e. ( TopOn ` T ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : T --> RR ) |
| 14 |
9 12 5 13
|
syl3anc |
|- ( ph -> F : T --> RR ) |