| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumsnd.1 |
|- ( ph -> F/_ k B ) |
| 2 |
|
sumsnd.2 |
|- F/ k ph |
| 3 |
|
sumsnd.3 |
|- ( ( ph /\ k = M ) -> A = B ) |
| 4 |
|
sumsnd.4 |
|- ( ph -> M e. V ) |
| 5 |
|
sumsnd.5 |
|- ( ph -> B e. CC ) |
| 6 |
|
csbeq1a |
|- ( k = m -> A = [_ m / k ]_ A ) |
| 7 |
|
nfcv |
|- F/_ m A |
| 8 |
|
nfcsb1v |
|- F/_ k [_ m / k ]_ A |
| 9 |
6 7 8
|
cbvsum |
|- sum_ k e. { M } A = sum_ m e. { M } [_ m / k ]_ A |
| 10 |
|
csbeq1 |
|- ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 11 |
|
1nn |
|- 1 e. NN |
| 12 |
11
|
a1i |
|- ( ph -> 1 e. NN ) |
| 13 |
|
f1osng |
|- ( ( 1 e. NN /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 14 |
11 4 13
|
sylancr |
|- ( ph -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 15 |
|
1z |
|- 1 e. ZZ |
| 16 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 17 |
|
f1oeq2 |
|- ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) |
| 18 |
15 16 17
|
mp2b |
|- ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 19 |
14 18
|
sylibr |
|- ( ph -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 20 |
|
elsni |
|- ( m e. { M } -> m = M ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ m e. { M } ) -> m = M ) |
| 22 |
21
|
csbeq1d |
|- ( ( ph /\ m e. { M } ) -> [_ m / k ]_ A = [_ M / k ]_ A ) |
| 23 |
2 1 4 3
|
csbiedf |
|- ( ph -> [_ M / k ]_ A = B ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ m e. { M } ) -> [_ M / k ]_ A = B ) |
| 25 |
5
|
adantr |
|- ( ( ph /\ m e. { M } ) -> B e. CC ) |
| 26 |
24 25
|
eqeltrd |
|- ( ( ph /\ m e. { M } ) -> [_ M / k ]_ A e. CC ) |
| 27 |
22 26
|
eqeltrd |
|- ( ( ph /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) |
| 28 |
23
|
adantr |
|- ( ( ph /\ n e. ( 1 ... 1 ) ) -> [_ M / k ]_ A = B ) |
| 29 |
|
elfz1eq |
|- ( n e. ( 1 ... 1 ) -> n = 1 ) |
| 30 |
29
|
fveq2d |
|- ( n e. ( 1 ... 1 ) -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) |
| 31 |
|
fvsng |
|- ( ( 1 e. NN /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 32 |
11 4 31
|
sylancr |
|- ( ph -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 33 |
30 32
|
sylan9eqr |
|- ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , M >. } ` n ) = M ) |
| 34 |
33
|
csbeq1d |
|- ( ( ph /\ n e. ( 1 ... 1 ) ) -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ M / k ]_ A ) |
| 35 |
29
|
fveq2d |
|- ( n e. ( 1 ... 1 ) -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) |
| 36 |
|
fvsng |
|- ( ( 1 e. NN /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 37 |
11 5 36
|
sylancr |
|- ( ph -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 38 |
35 37
|
sylan9eqr |
|- ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = B ) |
| 39 |
28 34 38
|
3eqtr4rd |
|- ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 40 |
10 12 19 27 39
|
fsum |
|- ( ph -> sum_ m e. { M } [_ m / k ]_ A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 41 |
9 40
|
eqtrid |
|- ( ph -> sum_ k e. { M } A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 42 |
15 37
|
seq1i |
|- ( ph -> ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) = B ) |
| 43 |
41 42
|
eqtrd |
|- ( ph -> sum_ k e. { M } A = B ) |