Metamath Proof Explorer


Theorem stoweidlem27

Description: This lemma is used to prove the existence of a function p as in Lemma 1 BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Here ( qi ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem27.1 G = w X h Q | w = t T | 0 < h t
stoweidlem27.2 φ Q V
stoweidlem27.3 φ M
stoweidlem27.4 φ Y Fn ran G
stoweidlem27.5 φ ran G V
stoweidlem27.6 φ l ran G Y l l
stoweidlem27.7 φ F : 1 M 1-1 onto ran G
stoweidlem27.8 φ T U X
stoweidlem27.9 t φ
stoweidlem27.10 w φ
stoweidlem27.11 _ h Q
Assertion stoweidlem27 φ q M q : 1 M Q t T U i 1 M 0 < q i t

Proof

Step Hyp Ref Expression
1 stoweidlem27.1 G = w X h Q | w = t T | 0 < h t
2 stoweidlem27.2 φ Q V
3 stoweidlem27.3 φ M
4 stoweidlem27.4 φ Y Fn ran G
5 stoweidlem27.5 φ ran G V
6 stoweidlem27.6 φ l ran G Y l l
7 stoweidlem27.7 φ F : 1 M 1-1 onto ran G
8 stoweidlem27.8 φ T U X
9 stoweidlem27.9 t φ
10 stoweidlem27.10 w φ
11 stoweidlem27.11 _ h Q
12 fnex Y Fn ran G ran G V Y V
13 4 5 12 syl2anc φ Y V
14 f1ofn F : 1 M 1-1 onto ran G F Fn 1 M
15 7 14 syl φ F Fn 1 M
16 ovex 1 M V
17 fnex F Fn 1 M 1 M V F V
18 15 16 17 sylancl φ F V
19 coexg Y V F V Y F V
20 13 18 19 syl2anc φ Y F V
21 f1of F : 1 M 1-1 onto ran G F : 1 M ran G
22 7 21 syl φ F : 1 M ran G
23 fnfco Y Fn ran G F : 1 M ran G Y F Fn 1 M
24 4 22 23 syl2anc φ Y F Fn 1 M
25 rncoss ran Y F ran Y
26 fvelrnb Y Fn ran G k ran Y l ran G Y l = k
27 4 26 syl φ k ran Y l ran G Y l = k
28 27 biimpa φ k ran Y l ran G Y l = k
29 nfmpt1 _ w w X h Q | w = t T | 0 < h t
30 1 29 nfcxfr _ w G
31 30 nfrn _ w ran G
32 31 nfcri w l ran G
33 10 32 nfan w φ l ran G
34 6 ad2antrr φ l ran G w X l = h Q | w = t T | 0 < h t Y l l
35 simpr φ l ran G w X l = h Q | w = t T | 0 < h t l = h Q | w = t T | 0 < h t
36 34 35 eleqtrd φ l ran G w X l = h Q | w = t T | 0 < h t Y l h Q | w = t T | 0 < h t
37 nfcv _ h Y l
38 nfv h w = t T | 0 < Y l t
39 fveq1 h = Y l h t = Y l t
40 39 breq2d h = Y l 0 < h t 0 < Y l t
41 40 rabbidv h = Y l t T | 0 < h t = t T | 0 < Y l t
42 41 eqeq2d h = Y l w = t T | 0 < h t w = t T | 0 < Y l t
43 37 11 38 42 elrabf Y l h Q | w = t T | 0 < h t Y l Q w = t T | 0 < Y l t
44 36 43 sylib φ l ran G w X l = h Q | w = t T | 0 < h t Y l Q w = t T | 0 < Y l t
45 44 simpld φ l ran G w X l = h Q | w = t T | 0 < h t Y l Q
46 simpr φ l ran G l ran G
47 1 elrnmpt l ran G l ran G w X l = h Q | w = t T | 0 < h t
48 46 47 syl φ l ran G l ran G w X l = h Q | w = t T | 0 < h t
49 46 48 mpbid φ l ran G w X l = h Q | w = t T | 0 < h t
50 33 45 49 r19.29af φ l ran G Y l Q
51 50 adantlr φ k ran Y l ran G Y l Q
52 eleq1 Y l = k Y l Q k Q
53 51 52 syl5ibcom φ k ran Y l ran G Y l = k k Q
54 53 reximdva φ k ran Y l ran G Y l = k l ran G k Q
55 28 54 mpd φ k ran Y l ran G k Q
56 idd l ran G k Q k Q
57 56 a1i φ k ran Y l ran G k Q k Q
58 57 rexlimdv φ k ran Y l ran G k Q k Q
59 55 58 mpd φ k ran Y k Q
60 59 ex φ k ran Y k Q
61 60 ssrdv φ ran Y Q
62 25 61 sstrid φ ran Y F Q
63 df-f Y F : 1 M Q Y F Fn 1 M ran Y F Q
64 24 62 63 sylanbrc φ Y F : 1 M Q
65 nfv w t T U
66 10 65 nfan w φ t T U
67 nfv w i 1 M 0 < Y F i t
68 8 sselda φ t T U t X
69 eluni t X w t w w X
70 68 69 sylib φ t T U w t w w X
71 1 funmpt2 Fun G
72 1 dmeqi dom G = dom w X h Q | w = t T | 0 < h t
73 11 rabexgf Q V h Q | w = t T | 0 < h t V
74 2 73 syl φ h Q | w = t T | 0 < h t V
75 74 adantr φ w X h Q | w = t T | 0 < h t V
76 75 ex φ w X h Q | w = t T | 0 < h t V
77 10 76 ralrimi φ w X h Q | w = t T | 0 < h t V
78 dmmptg w X h Q | w = t T | 0 < h t V dom w X h Q | w = t T | 0 < h t = X
79 77 78 syl φ dom w X h Q | w = t T | 0 < h t = X
80 72 79 syl5eq φ dom G = X
81 80 eleq2d φ w dom G w X
82 81 biimpar φ w X w dom G
83 fvelrn Fun G w dom G G w ran G
84 71 82 83 sylancr φ w X G w ran G
85 84 adantrl φ t w w X G w ran G
86 22 ad2antrr φ G w ran G i 1 M F i = G w F : 1 M ran G
87 simprl φ G w ran G i 1 M F i = G w i 1 M
88 fvco3 F : 1 M ran G i 1 M Y F i = Y F i
89 86 87 88 syl2anc φ G w ran G i 1 M F i = G w Y F i = Y F i
90 fveq2 F i = G w Y F i = Y G w
91 90 ad2antll φ G w ran G i 1 M F i = G w Y F i = Y G w
92 89 91 eqtrd φ G w ran G i 1 M F i = G w Y F i = Y G w
93 eleq1 l = G w l ran G G w ran G
94 93 anbi2d l = G w φ l ran G φ G w ran G
95 eleq2 l = G w Y l l Y l G w
96 fveq2 l = G w Y l = Y G w
97 96 eleq1d l = G w Y l G w Y G w G w
98 95 97 bitrd l = G w Y l l Y G w G w
99 94 98 imbi12d l = G w φ l ran G Y l l φ G w ran G Y G w G w
100 99 6 vtoclg G w ran G φ G w ran G Y G w G w
101 100 anabsi7 φ G w ran G Y G w G w
102 101 adantr φ G w ran G i 1 M F i = G w Y G w G w
103 92 102 eqeltrd φ G w ran G i 1 M F i = G w Y F i G w
104 f1ofo F : 1 M 1-1 onto ran G F : 1 M onto ran G
105 forn F : 1 M onto ran G ran F = ran G
106 7 104 105 3syl φ ran F = ran G
107 106 eleq2d φ G w ran F G w ran G
108 107 biimpar φ G w ran G G w ran F
109 15 adantr φ G w ran G F Fn 1 M
110 fvelrnb F Fn 1 M G w ran F i 1 M F i = G w
111 109 110 syl φ G w ran G G w ran F i 1 M F i = G w
112 108 111 mpbid φ G w ran G i 1 M F i = G w
113 103 112 reximddv φ G w ran G i 1 M Y F i G w
114 85 113 syldan φ t w w X i 1 M Y F i G w
115 simplrl φ t w w X Y F i G w t w
116 simpr φ w X w X
117 1 fvmpt2 w X h Q | w = t T | 0 < h t V G w = h Q | w = t T | 0 < h t
118 116 75 117 syl2anc φ w X G w = h Q | w = t T | 0 < h t
119 118 eleq2d φ w X Y F i G w Y F i h Q | w = t T | 0 < h t
120 119 biimpa φ w X Y F i G w Y F i h Q | w = t T | 0 < h t
121 120 adantlrl φ t w w X Y F i G w Y F i h Q | w = t T | 0 < h t
122 nfcv _ h Y F i
123 nfv h w = t T | 0 < Y F i t
124 fveq1 h = Y F i h t = Y F i t
125 124 breq2d h = Y F i 0 < h t 0 < Y F i t
126 125 rabbidv h = Y F i t T | 0 < h t = t T | 0 < Y F i t
127 126 eqeq2d h = Y F i w = t T | 0 < h t w = t T | 0 < Y F i t
128 122 11 123 127 elrabf Y F i h Q | w = t T | 0 < h t Y F i Q w = t T | 0 < Y F i t
129 121 128 sylib φ t w w X Y F i G w Y F i Q w = t T | 0 < Y F i t
130 129 simprd φ t w w X Y F i G w w = t T | 0 < Y F i t
131 115 130 eleqtrd φ t w w X Y F i G w t t T | 0 < Y F i t
132 rabid t t T | 0 < Y F i t t T 0 < Y F i t
133 131 132 sylib φ t w w X Y F i G w t T 0 < Y F i t
134 133 simprd φ t w w X Y F i G w 0 < Y F i t
135 134 ex φ t w w X Y F i G w 0 < Y F i t
136 135 reximdv φ t w w X i 1 M Y F i G w i 1 M 0 < Y F i t
137 114 136 mpd φ t w w X i 1 M 0 < Y F i t
138 137 ex φ t w w X i 1 M 0 < Y F i t
139 138 adantr φ t T U t w w X i 1 M 0 < Y F i t
140 66 67 70 139 exlimimdd φ t T U i 1 M 0 < Y F i t
141 140 ex φ t T U i 1 M 0 < Y F i t
142 9 141 ralrimi φ t T U i 1 M 0 < Y F i t
143 3 64 142 jca32 φ M Y F : 1 M Q t T U i 1 M 0 < Y F i t
144 feq1 q = Y F q : 1 M Q Y F : 1 M Q
145 fveq1 q = Y F q i = Y F i
146 145 fveq1d q = Y F q i t = Y F i t
147 146 breq2d q = Y F 0 < q i t 0 < Y F i t
148 147 rexbidv q = Y F i 1 M 0 < q i t i 1 M 0 < Y F i t
149 148 ralbidv q = Y F t T U i 1 M 0 < q i t t T U i 1 M 0 < Y F i t
150 144 149 anbi12d q = Y F q : 1 M Q t T U i 1 M 0 < q i t Y F : 1 M Q t T U i 1 M 0 < Y F i t
151 150 anbi2d q = Y F M q : 1 M Q t T U i 1 M 0 < q i t M Y F : 1 M Q t T U i 1 M 0 < Y F i t
152 151 spcegv Y F V M Y F : 1 M Q t T U i 1 M 0 < Y F i t q M q : 1 M Q t T U i 1 M 0 < q i t
153 20 143 152 sylc φ q M q : 1 M Q t T U i 1 M 0 < q i t