Metamath Proof Explorer


Theorem stoweidlem28

Description: There exists a δ as in Lemma 1 BrosowskiDeutsh p. 90: 0 < delta < 1 and p >= delta on T \ U . Here d is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem28.1 _tU
stoweidlem28.2 tφ
stoweidlem28.3 K=topGenran.
stoweidlem28.4 T=J
stoweidlem28.5 φJComp
stoweidlem28.6 φPJCnK
stoweidlem28.7 φtTU0<Pt
stoweidlem28.8 φUJ
Assertion stoweidlem28 φdd+d<1tTUdPt

Proof

Step Hyp Ref Expression
1 stoweidlem28.1 _tU
2 stoweidlem28.2 tφ
3 stoweidlem28.3 K=topGenran.
4 stoweidlem28.4 T=J
5 stoweidlem28.5 φJComp
6 stoweidlem28.6 φPJCnK
7 stoweidlem28.7 φtTU0<Pt
8 stoweidlem28.8 φUJ
9 halfre 12
10 halfgt0 0<12
11 9 10 elrpii 12+
12 11 a1i φTU=12+
13 halflt1 12<1
14 13 a1i φTU=12<1
15 nfcv _tT
16 15 1 nfdif _tTU
17 16 nfeq1 tTU=
18 17 rzalf TU=tTU12Pt
19 18 adantl φTU=tTU12Pt
20 ovex 12V
21 eleq1 d=12d+12+
22 breq1 d=12d<112<1
23 breq1 d=12dPt12Pt
24 23 ralbidv d=12tTUdPttTU12Pt
25 21 22 24 3anbi123d d=12d+d<1tTUdPt12+12<1tTU12Pt
26 20 25 spcev 12+12<1tTU12Ptdd+d<1tTUdPt
27 12 14 19 26 syl3anc φTU=dd+d<1tTUdPt
28 simplll φ¬TU=xTUtTUPTUxPTUtφ
29 simplr φ¬TU=xTUtTUPTUxPTUtxTU
30 simpr φ¬TU=xTUtTUPTUxPTUttTUPTUxPTUt
31 eqid JCnK=JCnK
32 3 4 31 6 fcnre φP:T
33 32 adantr φxTUP:T
34 eldifi xTUxT
35 34 adantl φxTUxT
36 33 35 ffvelcdmd φxTUPx
37 nfcv _xTU
38 nfv x0<Pt
39 nfv t0<Px
40 fveq2 t=xPt=Px
41 40 breq2d t=x0<Pt0<Px
42 16 37 38 39 41 cbvralfw tTU0<PtxTU0<Px
43 42 biimpi tTU0<PtxTU0<Px
44 43 r19.21bi tTU0<PtxTU0<Px
45 7 44 sylan φxTU0<Px
46 36 45 elrpd φxTUPx+
47 46 3adant3 φxTUtTUPTUxPTUtPx+
48 16 nfcri txTU
49 nfra1 ttTUPTUxPTUt
50 2 48 49 nf3an tφxTUtTUPTUxPTUt
51 rspa tTUPTUxPTUttTUPTUxPTUt
52 51 3ad2antl3 φxTUtTUPTUxPTUttTUPTUxPTUt
53 simpl2 φxTUtTUPTUxPTUttTUxTU
54 fvres xTUPTUx=Px
55 53 54 syl φxTUtTUPTUxPTUttTUPTUx=Px
56 fvres tTUPTUt=Pt
57 56 adantl φxTUtTUPTUxPTUttTUPTUt=Pt
58 52 55 57 3brtr3d φxTUtTUPTUxPTUttTUPxPt
59 58 ex φxTUtTUPTUxPTUttTUPxPt
60 50 59 ralrimi φxTUtTUPTUxPTUttTUPxPt
61 eleq1 c=Pxc+Px+
62 breq1 c=PxcPtPxPt
63 62 ralbidv c=PxtTUcPttTUPxPt
64 61 63 anbi12d c=Pxc+tTUcPtPx+tTUPxPt
65 64 spcegv Px+Px+tTUPxPtcc+tTUcPt
66 47 65 syl φxTUtTUPTUxPTUtPx+tTUPxPtcc+tTUcPt
67 47 60 66 mp2and φxTUtTUPTUxPTUtcc+tTUcPt
68 simpl1 φxTUtTUPTUxPTUtc+tTUcPtφ
69 simprl φxTUtTUPTUxPTUtc+tTUcPtc+
70 simprr φxTUtTUPTUxPTUtc+tTUcPttTUcPt
71 nfv tc+
72 nfra1 ttTUcPt
73 2 71 72 nf3an tφc+tTUcPt
74 eqid ifc12c12=ifc12c12
75 32 3ad2ant1 φc+tTUcPtP:T
76 difssd φc+tTUcPtTUT
77 simp2 φc+tTUcPtc+
78 simp3 φc+tTUcPttTUcPt
79 73 74 75 76 77 78 stoweidlem5 φc+tTUcPtdd+d<1tTUdPt
80 68 69 70 79 syl3anc φxTUtTUPTUxPTUtc+tTUcPtdd+d<1tTUdPt
81 67 80 exlimddv φxTUtTUPTUxPTUtdd+d<1tTUdPt
82 28 29 30 81 syl3anc φ¬TU=xTUtTUPTUxPTUtdd+d<1tTUdPt
83 eqid J𝑡TU=J𝑡TU
84 cmptop JCompJTop
85 5 84 syl φJTop
86 elssuni UJUJ
87 8 86 syl φUJ
88 87 4 sseqtrrdi φUT
89 4 isopn2 JTopUTUJTUClsdJ
90 85 88 89 syl2anc φUJTUClsdJ
91 8 90 mpbid φTUClsdJ
92 cmpcld JCompTUClsdJJ𝑡TUComp
93 5 91 92 syl2anc φJ𝑡TUComp
94 93 adantr φ¬TU=J𝑡TUComp
95 6 adantr φ¬TU=PJCnK
96 difssd φ¬TU=TUT
97 4 cnrest PJCnKTUTPTUJ𝑡TUCnK
98 95 96 97 syl2anc φ¬TU=PTUJ𝑡TUCnK
99 difssd φTUT
100 4 restuni JTopTUTTU=J𝑡TU
101 85 99 100 syl2anc φTU=J𝑡TU
102 101 neeq1d φTUJ𝑡TU
103 df-ne TU¬TU=
104 102 103 bitr3di φJ𝑡TU¬TU=
105 104 biimpar φ¬TU=J𝑡TU
106 83 3 94 98 105 evth2 φ¬TU=xJ𝑡TUsJ𝑡TUPTUxPTUs
107 nfcv _sJ𝑡TU
108 nfcv _tJ
109 nfcv _t𝑡
110 108 109 16 nfov _tJ𝑡TU
111 110 nfuni _tJ𝑡TU
112 nfcv _tP
113 112 16 nfres _tPTU
114 nfcv _tx
115 113 114 nffv _tPTUx
116 nfcv _t
117 nfcv _ts
118 113 117 nffv _tPTUs
119 115 116 118 nfbr tPTUxPTUs
120 nfv sPTUxPTUt
121 fveq2 s=tPTUs=PTUt
122 121 breq2d s=tPTUxPTUsPTUxPTUt
123 107 111 119 120 122 cbvralfw sJ𝑡TUPTUxPTUstJ𝑡TUPTUxPTUt
124 123 rexbii xJ𝑡TUsJ𝑡TUPTUxPTUsxJ𝑡TUtJ𝑡TUPTUxPTUt
125 106 124 sylib φ¬TU=xJ𝑡TUtJ𝑡TUPTUxPTUt
126 16 111 raleqf TU=J𝑡TUtTUPTUxPTUttJ𝑡TUPTUxPTUt
127 126 rexeqbi1dv TU=J𝑡TUxTUtTUPTUxPTUtxJ𝑡TUtJ𝑡TUPTUxPTUt
128 101 127 syl φxTUtTUPTUxPTUtxJ𝑡TUtJ𝑡TUPTUxPTUt
129 128 adantr φ¬TU=xTUtTUPTUxPTUtxJ𝑡TUtJ𝑡TUPTUxPTUt
130 125 129 mpbird φ¬TU=xTUtTUPTUxPTUt
131 82 130 r19.29a φ¬TU=dd+d<1tTUdPt
132 27 131 pm2.61dan φdd+d<1tTUdPt