Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See raleq for a version based on fewer axioms. (Contributed by NM, 7-Mar-2004) (Revised by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqf.1 | ||
| raleqf.2 | |||
| Assertion | raleqf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqf.1 | ||
| 2 | raleqf.2 | ||
| 3 | 1 2 | nfeq | |
| 4 | eleq2 | ||
| 5 | 4 | imbi1d | |
| 6 | 3 5 | albid | |
| 7 | df-ral | ||
| 8 | df-ral | ||
| 9 | 6 7 8 | 3bitr4g |