| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem29.1 |
|
| 2 |
|
stoweidlem29.2 |
|
| 3 |
|
stoweidlem29.3 |
|
| 4 |
|
stoweidlem29.4 |
|
| 5 |
|
stoweidlem29.5 |
|
| 6 |
|
stoweidlem29.6 |
|
| 7 |
|
stoweidlem29.7 |
|
| 8 |
|
eqid |
|
| 9 |
4 3 8 6
|
fcnre |
|
| 10 |
|
df-f |
|
| 11 |
9 10
|
sylib |
|
| 12 |
11
|
simprd |
|
| 13 |
11
|
simpld |
|
| 14 |
|
fnfun |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
adantr |
|
| 17 |
9
|
fdmd |
|
| 18 |
17
|
eqcomd |
|
| 19 |
18
|
eleq2d |
|
| 20 |
19
|
biimpa |
|
| 21 |
|
fvelrn |
|
| 22 |
16 20 21
|
syl2anc |
|
| 23 |
|
nfcv |
|
| 24 |
1 23
|
nffv |
|
| 25 |
24
|
nfeq2 |
|
| 26 |
|
breq1 |
|
| 27 |
25 26
|
ralbid |
|
| 28 |
27
|
rspcev |
|
| 29 |
22 28
|
sylan |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfcv |
|
| 32 |
|
nfcv |
|
| 33 |
30 1 31 32 3 4 5 6 7
|
evth2f |
|
| 34 |
29 33
|
r19.29a |
|
| 35 |
|
nfv |
|
| 36 |
|
simpr |
|
| 37 |
13
|
ad2antrr |
|
| 38 |
|
nfcv |
|
| 39 |
32 38 1
|
fvelrnbf |
|
| 40 |
37 39
|
syl |
|
| 41 |
36 40
|
mpbid |
|
| 42 |
|
nfra1 |
|
| 43 |
2 42
|
nfan |
|
| 44 |
1
|
nfrn |
|
| 45 |
44
|
nfcri |
|
| 46 |
43 45
|
nfan |
|
| 47 |
|
nfv |
|
| 48 |
|
rspa |
|
| 49 |
|
breq2 |
|
| 50 |
48 49
|
syl5ibcom |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
ad2antlr |
|
| 53 |
46 47 52
|
rexlimd |
|
| 54 |
41 53
|
mpd |
|
| 55 |
54
|
ex |
|
| 56 |
35 55
|
ralrimi |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
reximdv |
|
| 59 |
34 58
|
mpd |
|
| 60 |
|
lbinfcl |
|
| 61 |
12 59 60
|
syl2anc |
|
| 62 |
12 61
|
sseldd |
|
| 63 |
12
|
adantr |
|
| 64 |
59
|
adantr |
|
| 65 |
|
dffn3 |
|
| 66 |
13 65
|
sylib |
|
| 67 |
66
|
ffvelcdmda |
|
| 68 |
|
lbinfle |
|
| 69 |
63 64 67 68
|
syl3anc |
|
| 70 |
69
|
ex |
|
| 71 |
2 70
|
ralrimi |
|
| 72 |
61 62 71
|
3jca |
|