Metamath Proof Explorer


Theorem fvelrnbf

Description: A version of fvelrnb using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fvelrnbf.1 _xA
fvelrnbf.2 _xB
fvelrnbf.3 _xF
Assertion fvelrnbf FFnABranFxAFx=B

Proof

Step Hyp Ref Expression
1 fvelrnbf.1 _xA
2 fvelrnbf.2 _xB
3 fvelrnbf.3 _xF
4 fvelrnb FFnABranFyAFy=B
5 nfcv _yA
6 nfcv _xy
7 3 6 nffv _xFy
8 7 2 nfeq xFy=B
9 nfv yFx=B
10 fveqeq2 y=xFy=BFx=B
11 5 1 8 9 10 cbvrexfw yAFy=BxAFx=B
12 4 11 bitrdi FFnABranFxAFx=B