Description: A version of fvelrnb using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvelrnbf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| fvelrnbf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| fvelrnbf.3 | ⊢ Ⅎ 𝑥 𝐹 | ||
| Assertion | fvelrnbf | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrnbf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | fvelrnbf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | fvelrnbf.3 | ⊢ Ⅎ 𝑥 𝐹 | |
| 4 | fvelrnb | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = 𝐵 ) ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 7 | 3 6 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 8 | 7 2 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝐵 |
| 9 | nfv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) = 𝐵 | |
| 10 | fveqeq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) | |
| 11 | 5 1 8 9 10 | cbvrexfw | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 12 | 4 11 | bitrdi | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |