Metamath Proof Explorer


Theorem fvelrnbf

Description: A version of fvelrnb using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fvelrnbf.1
|- F/_ x A
fvelrnbf.2
|- F/_ x B
fvelrnbf.3
|- F/_ x F
Assertion fvelrnbf
|- ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) )

Proof

Step Hyp Ref Expression
1 fvelrnbf.1
 |-  F/_ x A
2 fvelrnbf.2
 |-  F/_ x B
3 fvelrnbf.3
 |-  F/_ x F
4 fvelrnb
 |-  ( F Fn A -> ( B e. ran F <-> E. y e. A ( F ` y ) = B ) )
5 nfcv
 |-  F/_ y A
6 nfcv
 |-  F/_ x y
7 3 6 nffv
 |-  F/_ x ( F ` y )
8 7 2 nfeq
 |-  F/ x ( F ` y ) = B
9 nfv
 |-  F/ y ( F ` x ) = B
10 fveqeq2
 |-  ( y = x -> ( ( F ` y ) = B <-> ( F ` x ) = B ) )
11 5 1 8 9 10 cbvrexfw
 |-  ( E. y e. A ( F ` y ) = B <-> E. x e. A ( F ` x ) = B )
12 4 11 bitrdi
 |-  ( F Fn A -> ( B e. ran F <-> E. x e. A ( F ` x ) = B ) )