Metamath Proof Explorer


Theorem rfcnpre1

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre1.1
|- F/_ x B
rfcnpre1.2
|- F/_ x F
rfcnpre1.3
|- F/ x ph
rfcnpre1.4
|- K = ( topGen ` ran (,) )
rfcnpre1.5
|- X = U. J
rfcnpre1.6
|- A = { x e. X | B < ( F ` x ) }
rfcnpre1.7
|- ( ph -> B e. RR* )
rfcnpre1.8
|- ( ph -> F e. ( J Cn K ) )
Assertion rfcnpre1
|- ( ph -> A e. J )

Proof

Step Hyp Ref Expression
1 rfcnpre1.1
 |-  F/_ x B
2 rfcnpre1.2
 |-  F/_ x F
3 rfcnpre1.3
 |-  F/ x ph
4 rfcnpre1.4
 |-  K = ( topGen ` ran (,) )
5 rfcnpre1.5
 |-  X = U. J
6 rfcnpre1.6
 |-  A = { x e. X | B < ( F ` x ) }
7 rfcnpre1.7
 |-  ( ph -> B e. RR* )
8 rfcnpre1.8
 |-  ( ph -> F e. ( J Cn K ) )
9 2 nfcnv
 |-  F/_ x `' F
10 nfcv
 |-  F/_ x (,)
11 nfcv
 |-  F/_ x +oo
12 1 10 11 nfov
 |-  F/_ x ( B (,) +oo )
13 9 12 nfima
 |-  F/_ x ( `' F " ( B (,) +oo ) )
14 nfrab1
 |-  F/_ x { x e. X | B < ( F ` x ) }
15 cntop1
 |-  ( F e. ( J Cn K ) -> J e. Top )
16 8 15 syl
 |-  ( ph -> J e. Top )
17 istopon
 |-  ( J e. ( TopOn ` X ) <-> ( J e. Top /\ X = U. J ) )
18 16 5 17 sylanblrc
 |-  ( ph -> J e. ( TopOn ` X ) )
19 retopon
 |-  ( topGen ` ran (,) ) e. ( TopOn ` RR )
20 4 19 eqeltri
 |-  K e. ( TopOn ` RR )
21 iscn
 |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) )
22 18 20 21 sylancl
 |-  ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) )
23 8 22 mpbid
 |-  ( ph -> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) )
24 23 simpld
 |-  ( ph -> F : X --> RR )
25 24 ffvelrnda
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. RR )
26 elioopnf
 |-  ( B e. RR* -> ( ( F ` x ) e. ( B (,) +oo ) <-> ( ( F ` x ) e. RR /\ B < ( F ` x ) ) ) )
27 7 26 syl
 |-  ( ph -> ( ( F ` x ) e. ( B (,) +oo ) <-> ( ( F ` x ) e. RR /\ B < ( F ` x ) ) ) )
28 27 baibd
 |-  ( ( ph /\ ( F ` x ) e. RR ) -> ( ( F ` x ) e. ( B (,) +oo ) <-> B < ( F ` x ) ) )
29 25 28 syldan
 |-  ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( B (,) +oo ) <-> B < ( F ` x ) ) )
30 29 pm5.32da
 |-  ( ph -> ( ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) <-> ( x e. X /\ B < ( F ` x ) ) ) )
31 ffn
 |-  ( F : X --> RR -> F Fn X )
32 elpreima
 |-  ( F Fn X -> ( x e. ( `' F " ( B (,) +oo ) ) <-> ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) ) )
33 24 31 32 3syl
 |-  ( ph -> ( x e. ( `' F " ( B (,) +oo ) ) <-> ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) ) )
34 rabid
 |-  ( x e. { x e. X | B < ( F ` x ) } <-> ( x e. X /\ B < ( F ` x ) ) )
35 34 a1i
 |-  ( ph -> ( x e. { x e. X | B < ( F ` x ) } <-> ( x e. X /\ B < ( F ` x ) ) ) )
36 30 33 35 3bitr4d
 |-  ( ph -> ( x e. ( `' F " ( B (,) +oo ) ) <-> x e. { x e. X | B < ( F ` x ) } ) )
37 3 13 14 36 eqrd
 |-  ( ph -> ( `' F " ( B (,) +oo ) ) = { x e. X | B < ( F ` x ) } )
38 37 6 eqtr4di
 |-  ( ph -> ( `' F " ( B (,) +oo ) ) = A )
39 iooretop
 |-  ( B (,) +oo ) e. ( topGen ` ran (,) )
40 39 4 eleqtrri
 |-  ( B (,) +oo ) e. K
41 cnima
 |-  ( ( F e. ( J Cn K ) /\ ( B (,) +oo ) e. K ) -> ( `' F " ( B (,) +oo ) ) e. J )
42 8 40 41 sylancl
 |-  ( ph -> ( `' F " ( B (,) +oo ) ) e. J )
43 38 42 eqeltrrd
 |-  ( ph -> A e. J )