| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rfcnpre1.1 |
|- F/_ x B |
| 2 |
|
rfcnpre1.2 |
|- F/_ x F |
| 3 |
|
rfcnpre1.3 |
|- F/ x ph |
| 4 |
|
rfcnpre1.4 |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
rfcnpre1.5 |
|- X = U. J |
| 6 |
|
rfcnpre1.6 |
|- A = { x e. X | B < ( F ` x ) } |
| 7 |
|
rfcnpre1.7 |
|- ( ph -> B e. RR* ) |
| 8 |
|
rfcnpre1.8 |
|- ( ph -> F e. ( J Cn K ) ) |
| 9 |
2
|
nfcnv |
|- F/_ x `' F |
| 10 |
|
nfcv |
|- F/_ x (,) |
| 11 |
|
nfcv |
|- F/_ x +oo |
| 12 |
1 10 11
|
nfov |
|- F/_ x ( B (,) +oo ) |
| 13 |
9 12
|
nfima |
|- F/_ x ( `' F " ( B (,) +oo ) ) |
| 14 |
|
nfrab1 |
|- F/_ x { x e. X | B < ( F ` x ) } |
| 15 |
|
cntop1 |
|- ( F e. ( J Cn K ) -> J e. Top ) |
| 16 |
8 15
|
syl |
|- ( ph -> J e. Top ) |
| 17 |
|
istopon |
|- ( J e. ( TopOn ` X ) <-> ( J e. Top /\ X = U. J ) ) |
| 18 |
16 5 17
|
sylanblrc |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 19 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 20 |
4 19
|
eqeltri |
|- K e. ( TopOn ` RR ) |
| 21 |
|
iscn |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) ) |
| 22 |
18 20 21
|
sylancl |
|- ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) ) |
| 23 |
8 22
|
mpbid |
|- ( ph -> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) |
| 24 |
23
|
simpld |
|- ( ph -> F : X --> RR ) |
| 25 |
24
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 26 |
|
elioopnf |
|- ( B e. RR* -> ( ( F ` x ) e. ( B (,) +oo ) <-> ( ( F ` x ) e. RR /\ B < ( F ` x ) ) ) ) |
| 27 |
7 26
|
syl |
|- ( ph -> ( ( F ` x ) e. ( B (,) +oo ) <-> ( ( F ` x ) e. RR /\ B < ( F ` x ) ) ) ) |
| 28 |
27
|
baibd |
|- ( ( ph /\ ( F ` x ) e. RR ) -> ( ( F ` x ) e. ( B (,) +oo ) <-> B < ( F ` x ) ) ) |
| 29 |
25 28
|
syldan |
|- ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( B (,) +oo ) <-> B < ( F ` x ) ) ) |
| 30 |
29
|
pm5.32da |
|- ( ph -> ( ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) <-> ( x e. X /\ B < ( F ` x ) ) ) ) |
| 31 |
|
ffn |
|- ( F : X --> RR -> F Fn X ) |
| 32 |
|
elpreima |
|- ( F Fn X -> ( x e. ( `' F " ( B (,) +oo ) ) <-> ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) ) ) |
| 33 |
24 31 32
|
3syl |
|- ( ph -> ( x e. ( `' F " ( B (,) +oo ) ) <-> ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) ) ) |
| 34 |
|
rabid |
|- ( x e. { x e. X | B < ( F ` x ) } <-> ( x e. X /\ B < ( F ` x ) ) ) |
| 35 |
34
|
a1i |
|- ( ph -> ( x e. { x e. X | B < ( F ` x ) } <-> ( x e. X /\ B < ( F ` x ) ) ) ) |
| 36 |
30 33 35
|
3bitr4d |
|- ( ph -> ( x e. ( `' F " ( B (,) +oo ) ) <-> x e. { x e. X | B < ( F ` x ) } ) ) |
| 37 |
3 13 14 36
|
eqrd |
|- ( ph -> ( `' F " ( B (,) +oo ) ) = { x e. X | B < ( F ` x ) } ) |
| 38 |
37 6
|
eqtr4di |
|- ( ph -> ( `' F " ( B (,) +oo ) ) = A ) |
| 39 |
|
iooretop |
|- ( B (,) +oo ) e. ( topGen ` ran (,) ) |
| 40 |
39 4
|
eleqtrri |
|- ( B (,) +oo ) e. K |
| 41 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ ( B (,) +oo ) e. K ) -> ( `' F " ( B (,) +oo ) ) e. J ) |
| 42 |
8 40 41
|
sylancl |
|- ( ph -> ( `' F " ( B (,) +oo ) ) e. J ) |
| 43 |
38 42
|
eqeltrrd |
|- ( ph -> A e. J ) |