Metamath Proof Explorer


Theorem rfcnpre1

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre1.1 _ x B
rfcnpre1.2 _ x F
rfcnpre1.3 x φ
rfcnpre1.4 K = topGen ran .
rfcnpre1.5 X = J
rfcnpre1.6 A = x X | B < F x
rfcnpre1.7 φ B *
rfcnpre1.8 φ F J Cn K
Assertion rfcnpre1 φ A J

Proof

Step Hyp Ref Expression
1 rfcnpre1.1 _ x B
2 rfcnpre1.2 _ x F
3 rfcnpre1.3 x φ
4 rfcnpre1.4 K = topGen ran .
5 rfcnpre1.5 X = J
6 rfcnpre1.6 A = x X | B < F x
7 rfcnpre1.7 φ B *
8 rfcnpre1.8 φ F J Cn K
9 2 nfcnv _ x F -1
10 nfcv _ x .
11 nfcv _ x +∞
12 1 10 11 nfov _ x B +∞
13 9 12 nfima _ x F -1 B +∞
14 nfrab1 _ x x X | B < F x
15 cntop1 F J Cn K J Top
16 8 15 syl φ J Top
17 istopon J TopOn X J Top X = J
18 16 5 17 sylanblrc φ J TopOn X
19 retopon topGen ran . TopOn
20 4 19 eqeltri K TopOn
21 iscn J TopOn X K TopOn F J Cn K F : X y K F -1 y J
22 18 20 21 sylancl φ F J Cn K F : X y K F -1 y J
23 8 22 mpbid φ F : X y K F -1 y J
24 23 simpld φ F : X
25 24 ffvelrnda φ x X F x
26 elioopnf B * F x B +∞ F x B < F x
27 7 26 syl φ F x B +∞ F x B < F x
28 27 baibd φ F x F x B +∞ B < F x
29 25 28 syldan φ x X F x B +∞ B < F x
30 29 pm5.32da φ x X F x B +∞ x X B < F x
31 ffn F : X F Fn X
32 elpreima F Fn X x F -1 B +∞ x X F x B +∞
33 24 31 32 3syl φ x F -1 B +∞ x X F x B +∞
34 rabid x x X | B < F x x X B < F x
35 34 a1i φ x x X | B < F x x X B < F x
36 30 33 35 3bitr4d φ x F -1 B +∞ x x X | B < F x
37 3 13 14 36 eqrd φ F -1 B +∞ = x X | B < F x
38 37 6 syl6eqr φ F -1 B +∞ = A
39 iooretop B +∞ topGen ran .
40 39 4 eleqtrri B +∞ K
41 cnima F J Cn K B +∞ K F -1 B +∞ J
42 8 40 41 sylancl φ F -1 B +∞ J
43 38 42 eqeltrrd φ A J